185. 玛雅游戏
玛雅难题是最近流行起来的一个游戏。
游戏界面是一个 7 行 5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。
游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下:
1、每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见输入输出样例说明中的图 6 到图 7);如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见下面图 1 和图 2 );
2、任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图 1 到图 3)。
注意:
a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图 4 ,三个颜色为 1 的方块和三个颜色为 2 的方块会同时被消除,最后剩下一个颜色为 2 的方块)。
b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图 5 所示的情形,5 个方块会同时被消除)。
3、方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。
上面图 1 到图 3 给出了在棋盘上移动一块方块之后棋盘的变化。
棋盘的左下角方块的坐标为 (0,0),将位于 (3,3) 的方块向左移动之后,游戏界面从图 1 变成图 2 所示的状态,此时在一竖列上有连续三块颜色为 4 的方块,满足消除条件,消除连续 3 块颜色为 4 的方块后,上方的颜色为 3 的方块掉落,形成图 3 所示的局面。
输入格式
第一行为一个正整数 n,表示要求游戏通关的步数(这里指的是恰好 n 步通关)。
接下来的 5 行,描述 7×5 的游戏界面。
每行若干个整数,每两个整数之间用一个空格隔开,每行以一个 0 结束,自下向上表示每竖列方块的颜色编号(颜色不多于 10 种,从 1 开始顺序编号,相同数字表示相同颜色)。
输入数据保证初始棋盘中没有可以消除的方块。
输出格式
如果有解决方案,输出 n 行,每行包含 3 个整数 x,y,g,表示一次移动,每两个整数之间用一个空格隔开,其中 (x,y) 表示要移动的方块的坐标,g 表示移动的方向,1 表示向右移动,−1 表示向左移动。
注意:多组解时,按照 x 为第一关健字,y 为第二关健字,1 优先于 −1,给出一组字典序最小的解。
游戏界面左下角的坐标为 (0,0)。
如果没有解决方案,输出一行,包含一个整数 −1。
数据范围
对于 30% 的数据,初始棋盘上的方块都在棋盘的最下面一行;
对于 100% 的数据,0<n≤5。
输入样例:
3
1 0
2 1 0
2 3 4 0
3 1 0
2 4 3 4 0
输出样例:
2 1 1
3 1 1
3 0 1
样例解释
按箭头方向的顺序分别为图 6 到图 11
样例输入的游戏局面如图 6 所示,依次移动的三步是:
1、(2,1) 处的方格向右移动。
2、(3,1) 处的方格向右移动。
3、(3,0) 处的方格向右移动。
最后可以将棋盘上所有方块消除。
思路
从第一行开始枚举每一个有颜色的格子,格子可以向左走和向右走,但优先向右走,只有当前格子的左边没有格子的时候,这个格子才可以向左走,因为当前格子向右走是(x,y,1),而当前格子的左边格子向右走是(x-1,y,-1),此时左边格子的字典序要小。
每次移动格子后,都要对格子进行消除,另外设置一个move函数,用来消除颜色相同的格子。
在dfs中,要回溯,所以在移动之前要将当前格子的状态copy给一个数组,用memcpy
实现,后来又回溯回来。
在move函数中,先用一次循环,在这个循环中,先将无颜色的格子设为0,然后再用一个标志变量的格子,来记录所有可以消除的格子,将这些可以消除的格子设为true。
然后再循环所有格子,将所有true的格子设为0,同时减去当前颜色的格子数量,并且将有颜色格子的总数–。
#include<bits/stdc++.h>
using namespace std;
int n;
//g是5行7列的格子,bg是用来copy的格子
int g[5][7],bg[5][5][7];
//cnt表示1~10种颜色的格子各有多少,bcnt用来copy
int cnt[11],bcnt[5][11];
bool st[5][7];//标志变量
struct Path//该结构体用来存储最终答案,d表示向左或右移动
{
int x,y,d;
}path[5];
void move(int a,int b,int c)
{
swap(g[a][b],g[c][b]);//向左走或向右走相当于交换两个格子
while(true)
{
bool flag=true;//如果可以消除格子,那么flag为false
//处理悬空的格子,将所有没有颜色的格子设为0
for(int x=0;x<5;x++)
{
int z=0;
for(int y=0;y<7;y++)
if(g[x][y])
g[x][z++]=g[x][y];
while(z<7) g[x][z++]=0;
}
memset(st,0,sizeof st);//记录哪些格可以消除,可以消除的设为true
for(int x=0;x<5;x++)//搜索所有格子
for(int y=0;y<7;y++)
if(g[x][y])//如果格子有颜色
{
int l=x,r=x;//先保持列不动,判断一行上是否可以消除
while(l-1>=0&&g[l-1][y]==g[x][y]) l--;
while(r+1<5&&g[r+1][y]==g[x][y]) r++;
if(r-l+1>=3)
{
st[x][y]=true;//可以消除,当前格子设为true
flag=false;
}
else
{
l=r=y;//保持行不动,判断一列上是否可以消除
while(l-1>=0&&g[x][l-1]==g[x][y]) l--;
while(r+1<7&&g[x][r+1]==g[x][y]) r++;
if(r-l+1>=3)
{
st[x][y]=true;
flag=false;
}
}
}
if(flag) break;//如果不能消除,跳出while循环
for(int x=0;x<5;x++)
for(int y=0;y<7;y++)
if(st[x][y])//st[x][y]表示当前格子可以消除
{
cnt[0]--;//带颜色的格子数量--
cnt[g[x][y]]--;//这种颜色的格子总数--
g[x][y]=0;//当前格子的颜色设为0
}
}
}
bool dfs(int u)
{
if(u==n) return !cnt[0];//如果搜了5步,判断有颜色格子的数量是否为0
for(int i=1;i<=10;i++)
if(cnt[i]==1 || cnt[i]==2)//如果有颜色的格子数量不为0,返回false
return false;
memcpy(bg[u],g,sizeof g);//在移动格子前,记录整个格子的状态
memcpy(bcnt[u],cnt,sizeof cnt);//和有颜色格子的数量各为多少
//因为一共进行5步搜索,所以开5个数组,否则,每次都要将上一次保存的状态清空
for(int x=0;x<5;x++)//搜索所有格子
for(int y=0;y<7;y++)
if(g[x][y])//如果格子有颜色
{
int nx=x+1;//向右走
if(nx<5)
{ //记录当前移动
path[u]={x,y,1};
move(x,y,nx);//每次移动后都要消除一次格子
if(dfs(u+1)) return true;
memcpy(g,bg[u],sizeof g);//回溯
memcpy(cnt,bcnt[u],sizeof cnt);
}
nx=x-1;//向左走
if(nx>=0&&!g[nx][y])//只有当前格子的左边没有格子的时候才能向左走
{
path[u]={x,y,-1};
move(x,y,nx);//每次移动后都要消除一次格子
if(dfs(u+1)) return true;
memcpy(g,bg[u],sizeof g);
memcpy(cnt,bcnt[u],sizeof cnt);
}
}
return false;
}
int main(){
scanf("%d",&n);
for(int x=0;x<5;x++)
{
int t,y=0;
while(scanf("%d",&t),t)
{
cnt[0]++;//cnt[0]表示所有有颜色的格子共有多少
cnt[t]++;//这种颜色的格子+1
g[x][y++]=t;//记录格子的颜色
}
}
if(dfs(0))//从第0步开始搜,一共可以搜索5步
{
for(int i=0;i<n;i++)
printf("%d %d %d\n",path[i].x,path[i].y,path[i].d);
}
else puts("-1");
return 0;
}