经典算法之折半查找(Binary Search)

在这里插入图片描述

活动地址:CSDN21天学习挑战赛

二分查找

        二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法,可以在数据规模的对数时间复杂度内完成查找。是一种在有序数组中查找某一特定元素的搜索算法。

算法思路

        以升序数列为例,比较目标元素与数列中间位置的元素的大小,如果目标元素比中间位置的元素大,则继续在数列的后半部分中进行二分查找;如果目标元素比中间位置的元素小,则在数列的前半部分进行比较;如果相等,则找到了元素的位置。每次比较的数列长度都会是之前数列的一半,直到找到相等元素的位置或者最终没有找到目标元素。

图解

给定一个有序的升序排列的数组 nums=[-1,0,2,5,8,12,18,38,43,46]
然后在该数组中找到目标值 target = 12。

图解如下:
在这里插入图片描述

力扣原题

704.二分查找

题目描述:
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1

解题思路:

根据题意得出该数组为有序数组,这也是使用二分查找的前提条件。

  • 定义两个指针分别指向数组的首尾两个元素;
  • 找到数组的中间值mid;
  • 如果nums[mid] < target,则 target 位于数组的后半部分,反之nums[mid] > target在前半部分;
  • 重复上一步操作,直到nums[mid] = target,说明找到target,返回下标即可。

Java代码实现:

class Solution {
    public int search(int[] nums, int target) {
        int left = 0,right = nums.length - 1;
        while(left <= right) { // 循环条件
            int mid = left + (right - left) / 2;
            if(nums[mid] == target){
                return mid;
            } else if (nums[mid] < target) {
                left = mid + 1;
            } else {
                right = mid - 1;
            }
        }
        return -1;  // 找不到则返回-1
    }
}

复杂度分析:

  • 时间复杂度:O(logn),其中 n 是数组的长度。

  • 空间复杂度:O(1)。

在这里插入图片描述

  • 32
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 37
    评论
评论 37
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿莫 夕林

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值