- 博客(244)
- 收藏
- 关注
原创 一文搞懂机器学习中的数据划分与验证方法!
本文介绍了机器学习中数据集划分的常用方法,包括训练集、验证集和测试集的作用与划分原则,重点讲解了k折交叉验证的原理、优势及实现步骤。通过Iris数据集示例展示了5折交叉验证的具体应用,并分析了不同验证方法的适用场景和注意事项。文章还提及了交叉验证的扩展方法如留一验证和嵌套交叉验证,强调了合理数据划分对模型评估的重要性,为读者提供了机器学习模型验证的实用指南。
2026-01-21 23:29:12
747
原创 一文搞懂训练集验证集和测试集之间的区别
在机器学习中,为了评估模型的泛化能力,需要将数据集合理划分为训练集、验证集和测试集。训练集用于模型的学习,验证集用于模型选择和超参数调优,而测试集则用于最终性能评估。
2026-01-21 23:28:01
374
原创 一文搞懂强化学习的基础知识!
强化学习是一种通过与环境交互学习最优决策策略的机器学习方法,其核心是马尔可夫决策过程(MDP)框架。MDP由状态空间、动作空间、状态转移概率和奖励函数组成,通过动态规划方法如值迭代求解最优策略。本文以网格世界为例,演示了如何使用值迭代算法计算状态价值函数并导出最优策略,展示了强化学习在序列决策问题中的应用价值。该框架为机器人控制、游戏AI等实际问题提供了理论基础和解决方案。
2026-01-20 23:58:49
175
原创 万字长文!搞懂机器学习中半监督学习的经典方法!
半监督学习结合少量标注数据和大量未标注数据进行模型训练,有效降低标注成本。自训练通过初始模型预测高置信度样本作为伪标签迭代优化,但易受初始误差影响。协同训练则利用多视图特征,让不同分类器互相提供伪标签,提升模型鲁棒性。这些方法广泛应用于文本分类、图像识别等领域,显著提高模型性能。
2026-01-20 23:52:41
939
原创 万字长文!搞懂机器学习中的概率图模型
本文介绍了三种重要的概率图模型及其应用。高斯混合模型(GMM)通过多个高斯分布的线性组合实现软聚类和密度估计,适用于图像分割、异常检测等场景。隐马尔可夫模型(HMM)用于建模序列数据,能处理语音识别、基因分析等时序问题。贝叶斯网络则通过有向无环图表示变量间的条件依赖关系,在医疗诊断、风险评估等领域有广泛应用。这些模型结合概率论与图论,为复杂系统的建模和推断提供了有效工具。
2026-01-19 23:46:08
759
原创 一文搞懂t-SNE和UMAP降维方法!
本文介绍了两种非线性降维方法t-SNE和UMAP。t-SNE通过保持局部邻域结构实现高维数据可视化,但计算复杂度高且对全局结构保留较弱。UMAP结合流形学习与图论方法,在保留局部结构的同时能更好维持全局关系,且计算效率更高。两种方法都适用于数据可视化、聚类分析等场景,但UMAP在大规模数据处理上更具优势。文章通过Iris数据集展示了两种方法的实际应用效果,并比较了它们的特点与适用场景。
2026-01-19 23:35:47
624
原创 机器学习中独立成分分析ICA和主成分分析PCA有什么区别?
独立成分分析(ICA)是一种无监督降维方法,与PCA不同,ICA追求统计独立性而非相关性,能有效分离混合信号中的潜在独立成分。
2026-01-18 14:42:05
621
原创 一文搞懂机器学习中的PCA主成分分析
主成分分析(PCA)是一种线性降维方法,通过提取数据主成分实现特征压缩和可视化。其核心步骤包括数据中心化、计算协方差矩阵、特征值分解和选择主成分投影。PCA能有效降低计算复杂度并去除噪声,但无法处理非线性结构且对异常值敏感。文章通过Iris数据集示例展示了PCA的实现过程,并比较了不同降维方法的优缺点。最新研究进展可通过关注公众号获取。
2026-01-18 14:40:18
672
原创 一文搞懂层次聚类和密度聚类方法!
本文介绍了两种常见的无监督聚类方法:层次聚类和密度聚类。层次聚类通过构建样本间的层次关系形成聚类树,可分为自底向上(凝聚型)和自顶向下(分裂型)两种方式,适用于小规模数据分析但计算复杂度较高。密度聚类方法(如DBSCAN和OPTICS)通过寻找高密度区域划分簇,能处理噪声和非凸形簇结构,其中DBSCAN简单高效,而OPTICS能适应不同密度的簇但计算更复杂。文章通过代码示例展示了两种方法的应用效果,并比较了它们的优缺点,为数据挖掘和探索性分析提供了重要工具。
2026-01-17 20:48:44
751
原创 K-Medoids聚类方法和K-Means有什么区别?
本文介绍了两种经典聚类算法:K-Means和K-Medoids。K-Means通过迭代优化将数据划分为K个簇,计算复杂度低但易受异常值影响;K-Medoids使用实际样本点作为簇中心,对噪声更鲁棒但计算复杂度较高。两种方法都适用于无监督学习场景,但各有适用条件:K-Means适合大规模数据,K-Medoids更适用于小规模高质量数据或需要稳健性的任务。文章通过Python代码示例展示了两种算法的实现过程,并对比了它们的优缺点和应用场景。
2026-01-17 20:43:47
618
原创 一文搞懂K-Means 聚类!
聚类是一种无监督学习方法,通过相似性将数据划分为不同簇,广泛应用于用户分群、市场细分等领域。K-Means通过迭代优化目标函数,将数据划分为K个簇,具有简单高效的特点。文章详细讲解了K-Means的算法流程、数学原理,并提供了Python实现示例,展示了聚类效果。最后指出K-Means的局限性及改进方法,如K-Means++等。该算法在数据挖掘和机器学习中仍具有重要地位。
2026-01-16 22:10:49
615
原创 一文搞懂监督学习中的集成学习!
本文介绍了机器学习中重要的树模型与集成学习方法。主要内容包括:1)Bagging方法及其代表算法随机森林,通过自助采样和特征随机选择降低方差;2)Boosting方法及其变体(AdaBoost、GBDT、XGBoost等),通过迭代修正错误样本权重提升精度。文章比较了不同算法的特点,并提供了Python代码示例演示随机森林、AdaBoost和XGBoost的实现。集成方法通过组合多个基学习器,能显著提高模型稳定性和预测性能,是工业界广泛应用的强大工具。
2026-01-16 22:05:59
1149
原创 一文搞懂树模型与集成模型
本文介绍了决策树和集成模型的基本原理与应用。决策树通过特征划分实现分类或回归,具有直观、可解释性强的特点,但容易过拟合。常见决策树算法包括ID3、C4.5和CART,分别采用信息增益、信息增益率和基尼指数作为划分准则。集成方法通过组合多个决策树提升性能,包括Bagging(如随机森林)、Boosting(如XGBoost)和Stacking。文章还演示了使用scikit-learn构建决策树分类器的代码示例,展示了决策树在鸢尾花数据集上的应用效果。
2026-01-15 23:37:11
603
原创 万字长文!一文搞懂监督学习中的分类模型!
分类模型是监督学习的核心分支,主要用于将输入样本划分到预定义类别中。逻辑回归通过Sigmoid函数将线性输出转化为概率,适用于二分类问题;朴素贝叶斯基于贝叶斯定理和特征独立性假设,分为高斯、多项式和伯努利三种变体,在文本分类等领域表现优异。两者都通过概率推断进行分类,但逻辑回归学习决策边界,而朴素贝叶斯直接计算后验概率。示例代码展示了如何使用scikit-learn实现这两种模型,并可视化分类效果。
2026-01-15 23:30:03
704
原创 万字长文!一文搞懂回归学习!
回归模型是监督学习中预测连续数值的重要方法,主要包括线性回归、岭回归、Lasso回归等。线性回归通过最小二乘法拟合特征与目标的线性关系,简单高效但易受异常值影响。岭回归引入L2正则化解决多重共线性问题,提高模型稳定性。Lasso回归采用L1正则化实现特征选择,适合高维数据。这些模型广泛应用于房价预测、销量分析等领域,评价指标包括MSE、R²等。不同回归方法各有优劣,需根据数据特点选择合适的模型。
2026-01-14 00:03:37
812
原创 一文搞懂机器学习中的特征降维!
特征工程是机器学习中将原始数据转化为有效特征的关键步骤,直接影响模型性能。其核心目标包括提取有效信息、减少冗余噪声、增强表达能力及提高训练效率。主要环节有特征选择、构造和降维。特征降维通过保留主要信息将高维数据映射到低维空间,常用方法包括PCA(主成分分析)、LDA(线性判别分析)、ICA(独立成分分析)以及非线性方法如t-SNE和UMAP。这些方法能降低计算成本、减少过拟合风险并提高模型效率。
2026-01-12 23:52:29
642
原创 一文搞懂机器学习中的特征构造!
特征构造是通过已有特征生成新特征以提升模型性能的过程,主要包括数值变换(多项式、对数变换)、类别编码(独热、目标编码)、时间特征(周期统计)、文本特征(词频、情感)和特征组合。合理构造特征能增强信息量、提高准确性,但需避免维度爆炸和过拟合。更多内容可关注公众号aicoting。
2026-01-12 23:43:40
661
原创 机器学习特征工程中的特征选择
特征工程是机器学习中将原始数据转换为有效特征的关键步骤,直接影响模型性能。其核心目标包括提取有效信息、减少冗余、增强表达能力及提高训练效率。特征工程包含特征选择、构造和降维三个环节。特征选择方法分为三类:过滤法(基于统计指标)、包裹法(基于模型性能)和嵌入法(模型自带选择)。不同方法各有优劣,需根据数据特性和模型需求选择。特征工程与算法本身同等重要,能显著提升模型效果。
2026-01-11 13:44:27
560
原创 机器学习中的数据预处理方法大全!
数据预处理是提升机器学习模型性能的关键步骤,主要包括数据清洗、集成、变换和规约。针对缺失值,文章介绍了删除法、均值/众数填充、插值法及基于模型的KNN和MICE插补方法。异常值检测则采用Z-Score和IQR等统计方法识别偏离数据分布的样本。这些预处理技术能有效改善数据质量,为后续建模奠定基础。文中还提供了Python代码示例,帮助读者快速实现相关操作。
2026-01-11 13:33:03
998
原创 一文搞懂机器学习中的学习理论!
学习理论(Learning Theory)是机器学习的数学与理论基础之一,它可以从严格的数学角度解释和分析学习算法的性质与性能。
2026-01-10 17:52:35
642
原创 一文搞懂机器学习中的优化方法!
在机器学习中,模型的训练本质上是一个优化问题:我们希望找到一组参数,使得模型在给定数据上的损失最小化(或目标函数最大化)。优化方法提供了一套系统的数学工具,用于高效、稳定地寻找最佳参数。
2026-01-10 17:43:08
938
原创 一文搞懂机器学习线性代数基础知识!
本文介绍了线性代数在机器学习中的核心应用。主要内容包括:1)向量与矩阵的基本概念,展示如何用矩阵表示样本数据;2)向量运算的几何意义,包括内积计算相似度和范数用于正则化;3)矩阵运算在模型计算中的应用,如神经网络全连接层;4)特征值分解和SVD的原理及其在PCA降维、推荐系统等场景的应用;5)线性代数与机器学习模型的结合,包括线性回归、SVM和神经网络的计算过程。文章通过具体公式和案例,阐述了线性代数作为机器学习数学基础的重要性。
2026-01-09 23:39:27
687
原创 一文搞懂机器学习入门知识!
摘要 机器学习是人工智能的核心分支,通过数据驱动方法让计算机自动学习规律,实现预测、分类和决策。主要分为四类:监督学习(利用标注数据训练模型)、无监督学习(挖掘无标注数据的潜在模式)、半监督学习(结合少量标注与大量无标注数据)和强化学习(通过环境交互优化决策策略)。各类方法各有特点,可单独或结合使用解决实际问题,如医疗诊断、推荐系统、自动驾驶等。理解这些基础类型是掌握机器学习的关键。
2026-01-09 23:28:12
922
原创 激活函数有什么用?有哪些常用的激活函数?
在深度学习中,激活函数(Activation Function)是神经网络的灵魂。它不仅赋予网络非线性能力,还决定了训练的稳定性和模型性能。那么,激活函数到底是什么?为什么我们非用不可?有哪些经典函数?又该如何选择?本文带你全面解析。
2025-12-30 23:42:34
849
原创 Windows命令行代码自动补全详细步骤
在 Linux 或 macOS 上,很多开发者喜欢使用 zsh + oh-my-zsh 来获得强大的命令补全、历史搜索和美化提示。在 Windows 上,我们也可以打造类似体验,利用 PowerShell 7 + Oh My Posh + PSReadLine + posh-git,并让 VS Code 终端完美适配。本文将详细介绍安装与配置步骤。
2025-12-30 23:38:31
852
原创 多个 GitHub 账户SSH 密钥配置全攻略
在工作和个人项目中,我们经常需要使用多个 GitHub 账户。如果不进行合理配置,Git 操作(如 git push、git pull)总是使用默认账户,容易出错。本文记录了我在 Windows 上删除旧账户、生成新的 SSH 密钥,并实现多个 GitHub 用户共存的整个流程。
2025-12-29 23:47:18
1103
原创 GPT-5.1 发布:更聪明,也更有温度的 AI
如果说 GPT-5 是一位理性的工程师,那么 GPT-5.1 Instant 就像是那位既懂逻辑又会聊天的朋友。它延续了 GPT-5 的高准确性,同时在语气、理解力和指令执行上都有明显提升。
2025-12-29 23:45:11
699
原创 Self-Attention 为什么要做 QKV 的线性变换?又为什么要做 Softmax?
在看 Transformer 的 self-attention 结构时,很多人第一次见到 ( Q, K, V ) 三个矩阵都会有点疑惑:明明输入就是一个向量序列,为什么还要多此一举做三次线性变换?而且最后还要套上一个 Softmax,这又是在干什么?
2025-12-28 14:28:07
780
原创 主流的激活函数有哪些?
在深度学习中,激活函数(Activation Function)是神经网络的灵魂。它不仅赋予网络非线性能力,还决定了训练的稳定性和模型性能。那么,激活函数到底是什么?为什么我们非用不可?有哪些经典函数?又该如何选择?本文带你全面解析。
2025-12-28 14:22:13
903
原创 Transformer 中为什么用LayerNorm而不用BatchNorm?
无论是 BERT、GPT 还是 ViT,几乎都不用 Batch Normalization,而是清一色地用 Layer Normalization。这不是巧合,而是 Transformer 架构中一个非常深层的设计选择。
2025-12-27 12:26:12
1160
原创 Hugging Face 200页的大模型训练实录
最近,Hugging Face 发布了一篇罕见的超长技术博客——超过 200 页的《Smol 训练手册》。
2025-12-27 12:24:50
792
原创 Kimi K2 Thinking:面向思考+工具调用的高阶智能体大模型
最近Kimi K2 Thinking 在国内外AI圈引起了不小的轰动,它以“思考(thinking tokens)+ 长序列工具调用” 为核心设计理念,并提出训练与推理策略。
2025-12-25 23:26:47
1338
原创 线性回归VS逻辑回归,预测工资还是脱单率?
统计回归分析是大数据时代的扫地僧,但线性回归(Linear Regression)和逻辑回归(Logistic Regression)这对名字高度相似的孪生兄弟,却在数学模型的江湖中有着天差地别的应用领域。
2025-12-25 23:24:52
909
原创 面试官:你了解线性回归吗?它的损失函数是什么?
看到这个问题你是不是不屑于回答,因为线性回归是机器学习里最基础的模型之一,但你现在想一下真的能很好的回答这个问题吗,很多同学面对面试官问得很基础的问题时,容易答得断断续续,甚至说错公式。我想借这个问题和大家分享一下,我是怎么理解线性回归的,以及它的损失函数到底是啥。
2025-12-24 21:58:51
391
原创 面试官:为什么需要量化,为什么 int4 _ int8 量化后大模型仍能保持性能?
面试官:说一下什么是量化,为什么将大语言模型从 FP16 量化到 int8 甚至 int4,性能仍然能保持得很好?
2025-12-24 21:56:10
1123
原创 LongCat-Flash-Omni:美团的全模态大模型
在多模态浪潮加速的 2025 年,美团再次交出了一份令人惊艳的答卷。继 LongCat-Flash-Chat 与 LongCat-Flash-Thinking 之后,LongCat 系列迎来了新成员——LongCat-Flash-Omni。
2025-12-23 22:53:37
1109
原创 面试官:大模型对齐中的 RLHF 与 DPO有什么本质区别?为何 DPO 能替代 RLHF?
这道题其实是面试官想看你是否真的理解大模型安全对齐(Alignment)背后的优化逻辑。我们都知道这两个词看起来都跟“让模型更听话”有关,但它们在原理、流程和优化目标上,差别非常关键。今天我们来把这件事讲清楚。
2025-12-23 22:52:37
1078
原创 Kimi Linear——有望替代全注意力的全新注意力架构
Kimi最近提出了Kimi Linear,这是一种混合线性注意力(Hybrid Linear Attention)架构。它首次在公平比较中,于短上下文、长上下文和强化学习(RL)等多种场景下,全面超越了全注意力(Full Attention)架构。
2025-12-22 23:10:48
1123
原创 面试官:多模态指令微调(Instruction Tuning)如何统一不同模态的输出空间?
如果面试的时候面试官问你“多模态指令微调是怎么做到统一不同模态的输出空间的?”,你会回答嘛?
2025-12-22 23:10:17
980
基于MCP协议的Agent demo
2025-08-23
东南大学竞选PPT(保研,考研,奖学金)
2025-08-23
哈工大竞选PPT模板(保研,考研,奖学金)
2025-08-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅