试题 算法提高 学生节(C语言版)(官网测试通过)

目录

问题

代码:

解析:


问题(第一次用目录这个功能,可能比较混乱)

  贵系一年一度的学生节要开始了!!!
  这次学生节的节目一共有n个,由于贵系人才辈出,n貌似可能很大的样子哦……
  有一名小尚同学,由于他是从数学系转来贵系的,所以他被学生会主席马总勒令只能观看m个节目。
  小尚同学在失望之余,从体育苦力部的翔副主席那里偷来了一份节目单,并给每个节目都作了价值评估。
  他又发现学生节貌似要搞到很晚很晚,要是全看完的话就不能去洗澡了,这多么悲伤啊!
  于是他规定了一个自己能看的最晚的节目号(小尚同学说他洗澡的时间会随心情而定,所以有多种可能)。
  他希望能观看到节目价值和最高。

输入格式

  输入共n+T+1行。
  第一行有三个整数n和m和T,表示一共有n个节目,小尚同学最多能看m个节目小尚同学约定了T个最晚时间。
  之后n行每行有一个整数Vi,表示小尚同学心目中第i个节目的价值。
  之后T行每行有一个整数ti,表示每个最晚时间的节目号。

输出格式

  输出共T行,每行有一个整数,表示对于每一个ti,小尚同学看到节目价值和的最大值。

样例输入

2 1 2
9
10
1
2

样例输出

9
10

代码:

#include <stdio.h>
#include <stdlib.h>
int max2(int x,int y);
int all[1010][1010];
int value[1010];
int main()
{
    int m,n,T;
    scanf("%d %d %d",&n,&m,&T);
    int temp,i,j,k=0;
    value[0]=0;
    int result[T-1];
    for(i=0; i<=n+1; i++)
    {
        for(j=0; j<=n+1; j++)
        {
            all[i][j]=0;
        }
    }
    for (i=1; i<=n; i++)
    {
        scanf("%d",&temp);
        value[i]=temp;
    }
    temp=T;
    while(T>0)
    {
        T=T-1;
        int time;
        scanf("%d",&time);
        for(i=1; i<=time; i++)
        {
            for(j=1; j<=m; j++)
            {
                all[i][j]=max2(all[i-1][j],all[i-1][j-1]+value[i]);
            }
        }
        result[k]=all[time][m];
        k=k+1;
    }
    for(i=0; i<temp; i++)
    {
        printf("%d\n",result[i]);
    }
    return 0;
}

int max2(int x,int y)
{
    if(x>y)
    {
        return x;
    }
    if(y>x)
    {
        return y;
    }
    if(x==y)
    {
        return x;
    }
}

解析:

        由题目可以得知这道题是一道很经典的01背包问题的改良题,但是其中用到的解题思路还是和01背包问题一样,利用动态规划来解题。

        那么动态规划的解题分为三步。

        第一:确定数组维度和意义。

        题目的要求很明确,有两组数据,分别是每个节目的价值,和每个最晚时间的节目序号,很明显我们需要用到二维数组解题。而数组代表的意义就是我们需要求得的,即all[ i ][ j ]代表的意思是在 i 个节目中能看见的最大节目数为 j 的最大价值。

        第二:确定状态转移方程。

        那么我们需要得到all[ i ][ j ]的值,就需要回归到数组的意义上来,很明显这里只有两种状态,第一种就是我们取节目 i ,第二种是我们不取节目 i 。那么当我们取节目 i 的时候,因为只能观看m个节目则,j 需要减 1,则我们的状态转移方程的其中一部分就是,all[ i-1 ][ j-1 ]+value[ i ]。

        如果我们不取这个节目,那么在这个节目所看到的最大价值还是之前上一个节目看到的最大值,所以另一部分的状态转移方程则为,all[ i-1 ][ j ]。

        所以我们完整的状态转移方程就是:all[ i ][ j ]=max2(all[ i-1 ][ j ],all[ i-1 ][ j-1 ]+value[ i ])

        第三:算法实现。(就是敲代码)

        这里的算法实现有一个比较有意思的地方,因为题目特殊,这个题看起来像T个题目组成的题目,所以每次读取一个最晚时间,我们都需要再计算一次,所以我们利用了while循环,同时 i 代表的是节目,感兴趣的朋友可以试着将 j 设定成节目,但是要注意for循环的先后顺序。

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值