图论:无向网(UDN)的定义及相关操作

本文介绍了如何使用邻接矩阵创建无向网,并展示了Prim算法求最小生成树的过程。此外,还详细讲解了广度优先搜索(BFS)和深度优先搜索(DFS)在图中的应用。通过实例演示,读者可以了解算法在实际问题中的运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

创建无向网(邻接矩阵存储)

打印邻接矩阵

Prim算法得最小生成树

BFS

DFS

示例


 相关定义(队列将在BFS用到) 

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100
#define MaxVertexNum 100		//最大顶点数 
#define Infinity 65535		//表示 ∞ 
#define OK 1
#define ERROR 0
typedef int VertexType;	//顶点数据类型,数字为例 
typedef int EdgeType;
typedef int Status;
typedef struct{		//无向图的邻接矩阵 
	VertexType data[MaxVertexNum];		//顶点数据数组 
	EdgeType edge[MaxVertexNum][MaxVertexNum];		//邻接矩阵数组 
	int vertexnum, edgenum;		//顶点数,边数 
}MGraph;
typedef int QElemType;
typedef struct{
	QElemType data[MAXSIZE];
	int front, rear;
}SqQueue;
//初始化队列 
Status InitQueue(SqQueue *Q){
	Q->front=Q->rear=0;
	return OK;
}
//判断队列空否 
Status QueueEmpty(SqQueue *Q){
	if(Q->front == Q->rear)
	return TRUE;
	else	return FALSE;
}
//判断队列满否
 Status QueueFull(SqQueue *Q){
	if((Q->rear+1)%MAXSIZE == Q->front)
	return TRUE;
	else	return FALSE;
}
//入队 
Status EnQueue(SqQueue *Q, QElemType e){
	if((Q->rear+1)%MAXSIZE == Q->front){
		printf("队列满,无法入队!");
		return ERROR;
	}
	Q->data[Q->rear]=e;
	Q->rear=(Q->rear+1)%MAXSIZE;
	return OK;
}
//出队
Status DeQueue(SqQueue *Q, QElemType *e){
	if(Q->front == Q->rear){
		printf("队列空,无法出队!");
		return ERROR;
	}
	*e = Q->data[Q->front];
	Q->front=(Q->front+1)%MAXSIZE;
	return OK;
}

创建无向网(邻接矩阵存储)

void CreateMGraph(MGraph *G){		//无向网
	int i, j, k=0;
	VertexType v1, v2;
	EdgeType w;
	printf("输入顶点数及边数(逗号隔开):");
	scanf("%d,%d", &G->vertexnum, &G->edgenum);			//具体顶点数,边数 
	for(i=0;i<G->vertexnum;i++){
		G->data[i]=i;
	}
	for(i=0;i<G->vertexnum;i++)
		for(j=0;j<G->vertexnum;j++)
			G->edge[i][j]=Infinity;		//初始化邻接矩阵(边全为∞) 
	printf("为顶点之间创造边(Vi,Vj)以及权重(空格隔开):\n");
	for(;k<G->edgenum;k++){
		scanf("%d,%d %d", &v1, &v2, &w);
	 	if(v1==-1||v2==-1)
		 {
		 	printf("图中无此顶点!\n");
		 	return;
		  } 
		G->edge[v1-1][v2-1]=w;
		G->edge[v2-1][v1-1]=w;		//对称矩阵 
	}
}

打印邻接矩阵

void Display(MGraph G)
{
	int i,j;
	printf("\n-------------------------------");
	printf("\n 邻接矩阵:\n\n"); 	
	
		printf("\t ");
		for(i=0;i<G.vertexnum;i++)
		printf("\t%d",G.data[i]+1);
		printf("\n");
		 
		for(i=0;i<G.vertexnum;i++)
	   {
	   	  printf("\t%d",G.data[i]+1);
	   	  
		  for(j=0;j<G.vertexnum;j++)
	    {
	    	
	    	if(G.edge[i][j]==Infinity)
	 	    printf("\t∞");
	 	    else printf("\t%d",G.edge[i][j]);
	    }
	      printf("\n");
	   }	 
}

Prim算法得最小生成树

void MiniSpanTree_Prim(MGraph G){
	int min, i, j, k;
	int adjvex[MaxVertexNum];
	int lowcost[MaxVertexNum];
	lowcost[0]=0;
	adjvex[0]=0;
	for(i=0;i<G.vertexnum;i++){
		lowcost[i]=G.edge[0][i];
		adjvex[i]=0;
	}
	for(i=1;i<G.vertexnum;i++){
		min=Infinity;
		j=1; k=0;
		while(j<G.vertexnum){
			if(lowcost[j]!=0 && lowcost[j]<min){
				min=lowcost[j];
				k=j;
			}
			j++;
		}
		printf("(%d,%d), %d\n", adjvex[k]+1, k+1, G.edge[adjvex[k]][k]);
		lowcost[k]=0;
		for(j=1;j<G.vertexnum;j++){
			if(lowcost[j]!=0 && G.edge[k][j]<lowcost[j]){
				lowcost[j]=G.edge[k][j];
				adjvex[j]=k;
			}
		}
	}
}

BFS

//递归BFS
void BFS(MGraph G){
	int i, j;
	SqQueue Q;			InitQueue(&Q);
	for(i=0;i<G.vertexnum;i++)
		visited[i]=FALSE;
	for(i=0;i<G.vertexnum;i++){		//每个顶点走一遍 
		if(!visited[i]){
			printf("%d", G.data[i]+1);	//访问Vi 
			visited[i]=TRUE;		//标记已访问 
			EnQueue(&Q,i);			//将其下标入队
			while(!QueueEmpty){
				DeQueue(&Q,&i);			//队头元素出队给i
				for(j=0;j<G.vertexnum;j++){
					// 判断其它顶点若与当前顶点存在边且未访问过
					if((G.edge[i][j]==1) && !visited[j]){
						printf("%d", G.data[j]+1);
						visited[j]=TRUE;
						EnQueue(&Q,j);		//Vj访问后就入队 
					}
				} 
			} 
		}
	}
}

DFS

enum{False,True} visited[MaxVertexNum];		//访问标志 
//递归DFS
void DFSM(MGraph G, int i){		 	//从Vi开始的DFS 
	int j;
	printf("%d", G.data[i]+1);	//访问 
	visited[i]=TRUE;		//标记已访问 
	for(j=0;j<G.vertexnum;j++){
		if((G.edge[i][j]!=Infinity) && !visited[j]){		 
			DFSM(G, j);			//(Vi,Vj)存在且Vj没被访问,则又从Vj出发寻找下一个邻接点 
		}
	}
}
void DFS(MGraph G){		//整个图的DFS遍历 
	int i;
	for(i=0;i<G.vertexnum;i++){
		visited[i]=FALSE;
	}
	for(i=0;i<G.vertexnum;i++){
		if(!visited[i])
			DFSM(G,i);
	}
}

整体代码:

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#define TRUE 1
#define FALSE 0
#define MAXSIZE 100
#define MaxVertexNum 100		//最大顶点数 
#define Infinity 65535		//表示 ∞ 
#define OK 1
#define ERROR 0
typedef int VertexType;	//顶点数据类型,数字为例 
typedef int EdgeType;
typedef int Status;
typedef struct{		//无向图的邻接矩阵 
	VertexType data[MaxVertexNum];		//顶点数据数组 
	EdgeType edge[MaxVertexNum][MaxVertexNum];		//邻接矩阵数组 
	int vertexnum, edgenum;		//顶点数,边数 
}MGraph;
typedef int QElemType;
typedef struct{
	QElemType data[MAXSIZE];
	int front, rear;
}SqQueue;
//初始化队列 
Status InitQueue(SqQueue *Q){
	Q->front=Q->rear=0;
	return OK;
}
//判断队列空否 
Status QueueEmpty(SqQueue *Q){
	if(Q->front == Q->rear)
	return TRUE;
	else	return FALSE;
}
//判断队列满否
 Status QueueFull(SqQueue *Q){
	if((Q->rear+1)%MAXSIZE == Q->front)
	return TRUE;
	else	return FALSE;
}
//入队 
Status EnQueue(SqQueue *Q, QElemType e){
	if((Q->rear+1)%MAXSIZE == Q->front){
		printf("队列满,无法入队!");
		return ERROR;
	}
	Q->data[Q->rear]=e;
	Q->rear=(Q->rear+1)%MAXSIZE;
	return OK;
}
//出队
Status DeQueue(SqQueue *Q, QElemType *e){
	if(Q->front == Q->rear){
		printf("队列空,无法出队!");
		return ERROR;
	}
	*e = Q->data[Q->front];
	Q->front=(Q->front+1)%MAXSIZE;
	return OK;
}
void Display(MGraph G)
{
	int i,j;
	printf("\n-------------------------------");
	printf("\n 邻接矩阵:\n\n"); 	
	
		printf("\t ");
		for(i=0;i<G.vertexnum;i++)
		printf("\t%d",G.data[i]+1);
		printf("\n");
		 
		for(i=0;i<G.vertexnum;i++)
	   {
	   	  printf("\t%d",G.data[i]+1);
	   	  
		  for(j=0;j<G.vertexnum;j++)
	    {
	    	
	    	if(G.edge[i][j]==Infinity)
	 	    printf("\t∞");
	 	    else printf("\t%d",G.edge[i][j]);
	    }
	      printf("\n");
	   }	 
}

void CreateMGraph(MGraph *G){		//无向网
	int i, j, k=0;
	VertexType v1, v2;
	EdgeType w;
	printf("输入顶点数及边数(逗号隔开):");
	scanf("%d,%d", &G->vertexnum, &G->edgenum);			//具体顶点数,边数 
	for(i=0;i<G->vertexnum;i++){
		G->data[i]=i;
	}
	for(i=0;i<G->vertexnum;i++)
		for(j=0;j<G->vertexnum;j++)
			G->edge[i][j]=Infinity;		//初始化邻接矩阵(边全为∞) 
	printf("为顶点之间创造边(Vi,Vj)以及权重(空格隔开):\n");
	for(;k<G->edgenum;k++){
		scanf("%d,%d %d", &v1, &v2, &w);
	 	if(v1==-1||v2==-1)
		 {
		 	printf("图中无此顶点!\n");
		 	return;
		  } 
		G->edge[v1-1][v2-1]=w;
		G->edge[v2-1][v1-1]=w;		//对称矩阵 
	}
}

void MiniSpanTree_Prim(MGraph G){
	int min, i, j, k;
	int adjvex[MaxVertexNum];
	int lowcost[MaxVertexNum];
	lowcost[0]=0;
	adjvex[0]=0;
	for(i=0;i<G.vertexnum;i++){
		lowcost[i]=G.edge[0][i];
		adjvex[i]=0;
	}
	for(i=1;i<G.vertexnum;i++){
		min=Infinity;
		j=1; k=0;
		while(j<G.vertexnum){
			if(lowcost[j]!=0 && lowcost[j]<min){
				min=lowcost[j];
				k=j;
			}
			j++;
		}
		printf("(%d,%d), %d\n", adjvex[k]+1, k+1, G.edge[adjvex[k]][k]);
		lowcost[k]=0;
		for(j=1;j<G.vertexnum;j++){
			if(lowcost[j]!=0 && G.edge[k][j]<lowcost[j]){
				lowcost[j]=G.edge[k][j];
				adjvex[j]=k;
			}
		}
	}
}
enum{False,True} visited[MaxVertexNum];		//访问标志 
//递归DFS
void DFSM(MGraph G, int i){		 	//从Vi开始的DFS 
	int j;
	printf("%d", G.data[i]+1);	//访问 
	visited[i]=TRUE;		//标记已访问 
	for(j=0;j<G.vertexnum;j++){
		if((G.edge[i][j]!=Infinity) && !visited[j]){		 
			DFSM(G, j);			//(Vi,Vj)存在且Vj没被访问,则又从Vj出发寻找下一个邻接点 
		}
	}
}
void DFS(MGraph G){		//整个图的DFS遍历 
	int i;
	for(i=0;i<G.vertexnum;i++){
		visited[i]=FALSE;
	}
	for(i=0;i<G.vertexnum;i++){
		if(!visited[i])
			DFSM(G,i);
	}
}

//递归BFS
void BFS(MGraph G){
	int i, j;
	SqQueue Q;			InitQueue(&Q);
	for(i=0;i<G.vertexnum;i++)
		visited[i]=FALSE;
	for(i=0;i<G.vertexnum;i++){		//每个顶点走一遍 
		if(!visited[i]){
			printf("%d", G.data[i]+1);	//访问Vi 
			visited[i]=TRUE;		//标记已访问 
			EnQueue(&Q,i);			//将其下标入队
			while(!QueueEmpty){
				DeQueue(&Q,&i);			//队头元素出队给i
				for(j=0;j<G.vertexnum;j++){
					// 判断其它顶点若与当前顶点存在边且未访问过
					if((G.edge[i][j]==1) && !visited[j]){
						printf("%d", G.data[j]+1);
						visited[j]=TRUE;
						EnQueue(&Q,j);		//Vj访问后就入队 
					}
				} 
			} 
		}
	}
}
void main(){
	MGraph G;
	CreateMGraph(&G);
	Display(G);
	MiniSpanTree_Prim(G);
	printf("Result of DFS traverse:\n");
	DFS(G);
	putchar('\n');
	printf("Result of BFS traverse:\n");
	BFS(G);
}

示例

通过例子来说明算法操作的结果。

设有下图中给出的无向网


程序运行得到:

最小生成树

 BFS和DFS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值