树状数组(1.单点修改,区间查询 2.区间修改,单点查询)

部分转载及其图片引用自👉树状数组 数据结构详解与模板


前言

对于这样一个问题:给定数组a,有两种操作,第一个操作是使第i个数加上c,即a[i] + c;第二个
操作是查询区间 [L, R] 中各个数的累加和即a[L] + a[L + 1] + ... + a[R]
那么,朴素做法的话就是对于操作一使得a[i] += c,对于操作二遍历一遍从LR,然后各元素依次加上,这样做的时间复杂度分别为 O(1)O(n) 。也很容易想到利用前缀和来优化一下,但最终也会发现,虽然操作二的复杂度优化为 O(1) 了,但是在操作一上修改前缀和数组需要的复杂度却变为了 O(n)
所以这时候提出了树状数组的存储数据的结构,使得对于上面两个操作,复杂度均为 O(logN)

下面便是树状数组的二叉树形式:

假设对于a[]数组,它对应到的树为另一数组tree[],那么第i个数a[i]的意义就是结点tree[i]

标记为灰色的节点实际已被上层覆盖,不占据空间。

在这里插入图片描述
注意:任意结点tree[i]中存储的数据是所有子节点的和这句话很关键,它是优化更新和查询操作中循环次数的重要依据。

下面是二进制版本,能看到(绿色箭头的指向

更新过程是每次加了个二进制的低位1(101+1 ->110, 110 + 10 -> 1000, 1000 + 1000 -> 10000)

查询过程每次就是去掉了二进制中的低位1(1111 - 1 -> 1110, 1110 - 10 -> 1100, 1100 - 100 -> 1000)
在这里插入图片描述


树状数组 1:单点修改,区间查询

题目描述

如题,已知一个数列,你需要进行下面两种操作:

  • 将某一个数加上 x x x

  • 求出某区间每一个数的和

输入格式

第一行包含两个正整数 n , m n,m n,m,分别表示该数列数字的个数和操作的总个数。

第二行包含 n n n 个用空格分隔的整数,其中第 i i i 个数字表示数列第 i i i 项的初始值。

接下来 m m m 行每行包含 3 3 3 个整数,表示一个操作,具体如下:

  • 1 x k 含义:将第 x x x 个数加上 k k k

  • 2 x y 含义:输出区间 [ x , y ] [x,y] [x,y] 内每个数的和

输出格式

输出包含若干行整数,即为所有操作 2 2 2 的结果。

样例

样例输入

5 5
1 5 4 2 3
1 1 3
2 2 5
1 3 -1
1 4 2
2 1 4

样例输出

14
16

提示

【数据范围】

对于 30 % 30\% 30% 的数据, 1 ≤ n ≤ 8 1 \le n \le 8 1n8 1 ≤ m ≤ 10 1\le m \le 10 1m10
对于 70 % 70\% 70% 的数据, 1 ≤ n , m ≤ 1 0 4 1\le n,m \le 10^4 1n,m104
对于 100 % 100\% 100% 的数据, 1 ≤ n , m ≤ 5 × 1 0 5 1\le n,m \le 5\times 10^5 1n,m5×105

样例说明:

故输出结果14、16。


lowbit函数

由于更新和查询过程中,任一结点x的下一个位置都与其二进制表示中最低位的1有关系,所以定义lowbit(x)是取出x的最低位1。

int lowbit(int x){  return x & (-x);  }

单点更新

继续看开始给出的图

此时如果我们要更改A[1]

则有以下需要进行同步更新

1(001) tree[1]+=A[1]

lowbit(1)=001 1+lowbit(1)=2(010) tree[2]+=A[1]

lowbit(2)=010 2+lowbit(2)=4(100) tree[4]+=A[1]

lowbit(4)=100 4+lowbit(4)=8(1000) tree[8]+=A[1]

所以得出结论是:更新点x后,还需要不停往上更新包含了x的父结点直到更新至根节点n为止,而父结点的下标由x + lowbit(x)而来

void update(int x, int k){
    while(x <= n){      
        tree[x] += k;
        x += lowbit(x);		//x的父节点
    }
}

区间查询

前缀和

借助前缀和的思想,求 [L,R] 区间的Σ可以利用R的前缀和减去L - 1的前缀和,而这个前缀和的求法如下:

举个例子 x=5

tree[4]=A[1]+A[2]+A[3]+A[4];

tree[5]=A[5];

可以推出: sum(i = 5) ==> tree[4]+tree[5];

序号写为二进制: sum(101)=tree[(100)]+tree[(101)];

第一次101,减去最低位的1就是100。

其实也就是单点更新的逆操作

int getsum(int x){		//先求前缀和
    int sum = 0;
    while(x){
        sum += tree[x];
        x -= lowbit(x);
    }
    return sum;
}

int query(int x, int y){		//性质
    return getsum(y) - getsum(x - 1);
}

C++代码

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;

const int N = 2000010;

int tree[N];        //实际上不会用到原数组a,两个操作的对象均是树,所以可以直接考虑存一个树
int op, n, m, x, y, k, val;

int lowbit(int x){  return x & (-x);  }

void update(int x, int k){
    while(x <= n){
        tree[x] += k;
        x += lowbit(x);
    }
}

int getsum(int x){
    int sum = 0;
    while(x){
        sum += tree[x];
        x -= lowbit(x);
    }
    return sum;
}

int query(int x, int y){
    return getsum(y) - getsum(x - 1);
}

int main(){
    ios :: sync_with_stdio(false);
    cin >> n >> m;
    for(int i = 1;i <= n;i ++){
        cin >> val;
        update(i, val);        //更新即建树
    }
    while(m --){
        cin >> op;
        if(op == 1){
            cin >> x >> k;
            update(x, k);
        }
        else{
            cin >> x >> y;
            cout << query(x, y) << endl;
        }
    }

    return 0;
}

树状数组 2:区间修改,单点查询

题目描述

如题,已知一个数列,你需要进行下面两种操作:

  1. 将某区间每一个数加上 x x x

  2. 求出某一个数的值。

输入格式

第一行包含两个整数 N N N M M M,分别表示该数列数字的个数和操作的总个数。

第二行包含 N N N 个用空格分隔的整数,其中第 i i i 个数字表示数列第 $i $ 项的初始值。

接下来 M M M 行每行包含 2 2 2 4 4 4个整数,表示一个操作,具体如下:

操作 1 1 1: 格式:1 x y k 含义:将区间 [ x , y ] [x,y] [x,y] 内每个数加上 k k k

操作 2 2 2: 格式:2 x 含义:输出第 x x x 个数的值。

输出格式

输出包含若干行整数,即为所有操作 2 2 2 的结果。

样例

样例输入

5 5
1 5 4 2 3
1 2 4 2
2 3
1 1 5 -1
1 3 5 7
2 4

样例输出

6
10

提示

样例 1 解释

故输出结果为 6、10。


数据规模与约定

对于 30 % 30\% 30% 的数据: N ≤ 8 N\le8 N8 M ≤ 10 M\le10 M10

对于 70 % 70\% 70% 的数据: N ≤ 10000 N\le 10000 N10000 M ≤ 10000 M\le10000 M10000

对于 100 % 100\% 100% 的数据: 1 ≤ N , M ≤ 500000 1 \leq N, M\le 500000 1N,M500000 1 ≤ x , y ≤ n 1 \leq x, y \leq n 1x,yn,保证任意时刻序列中任意元素的绝对值都不大于 2 30 2^{30} 230


区间更新

差分

其实对于前面的两种操作,发现用的还是一个前缀和的思想,为了便于求出 [L,R] 区间的累加和,通过

树状数组求出两个前缀和后作差便轻易得出。那么按照同样的思路,为了便于对整个区间进行修改,可

以考虑差分的思想,使树状数组存的是关于原数组a(虽然不会用上)的差分,即
tree[i] = a[i] - a[i - 1]
于是每次在对区间更新时只需将相关的父子结点 “打上标记” 便实现,而要查询某个点i,只需求一

遍前缀和(a[i] = tree[1] + tree[2] + .. + tree[i])即可。

void insert(ll i, ll k){        //差分数组上打标记
    while (i <= n){
        tree[i] += k;
        i += lowbit(i);
    }
}

void update(ll x, ll y, ll k){
    insert(x, k), insert(y + 1, -k);
}

单点查询

ll query(ll x){         //求前缀和,跟getsum一样
    ll sum = 0;
    while(x){
        sum += tree[x];
        x -= lowbit(x);
    }
    return sum;
}

C++代码

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;

const int N = 4000010;

ll tree[N];        //实际上不会用到原数组a,两个操作的对象均是树,所以可以直接考虑存一个树
ll op, n, m, x, y, k, val;

ll lowbit(ll x){  return x & (-x);  }

void insert(ll i, ll k){        //差分数组上打标记
    while (i <= n){
        tree[i] += k;
        i += lowbit(i);
    }
}

void update(ll x, ll y, ll k){
    insert(x, k), insert(y + 1, -k);
}

ll query(ll x){         //求前缀和,跟getsum一样
    ll sum = 0;
    while(x){
        sum += tree[x];
        x -= lowbit(x);
    }
    return sum;
}


int main(){
    ios :: sync_with_stdio(false);
    cin >> n >> m;
    for(int i = 1;i <= n;i ++){
        cin >> val;
        update(i, i, val);        //更新即建树
    }
    while(m --){
        cin >> op;
        if(op == 1){
            cin >> x >> y >> k;
            update(x, y, k);
        }
        else{
            cin >> x;
            cout << query(x) << endl;
        }
    }

    return 0;
}

对于区间修改和区间查询,很适合考虑线段树来做,👇👇
线段树(区间修改,区间合并)

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
树状数组(Fenwick Tree)是一种用于高效处理区间修改单点查询数据结构。下面我将介绍如何使用树状数组实现区间修改单点查询。 首先,我们需要定义树状数组数据结构树状数组由一个数组和一组操作组成,其中数组用于存储数据,操作用于更新和查询数组中的值。 下面是一个示例的树状数组实现: ```python class FenwickTree: def __init__(self, n): self.size = n self.tree = [0] * (n + 1) def update(self, idx, delta): while idx <= self.size: self.tree[idx] += delta idx += idx & -idx def query(self, idx): res = 0 while idx > 0: res += self.tree[idx] idx -= idx & -idx return res def range_update(self, l, r, delta): self.update(l, delta) self.update(r + 1, -delta) def point_query(self, idx): return self.query(idx) ``` 在上面的代码中,我们定义了一个FenwickTree类,通过构造函数`__init__`来初始化树状数组,并使用`size`来表示数组的大小。`tree`数组用于存储数据。`update`方法用于更新指定位置的值,`query`方法用于查询指定位置之前的求和结果。`range_update`方法用于对指定区间进行修改,`point_query`方法用于查询单个位置的值。 下面是一个示例的使用场景: ```python # 示例使用 n = 10 tree = FenwickTree(n) # 区间修改 [2, 6] 的值加 3 tree.range_update(2, 6, 3) # 查询位置 5 的值 value = tree.point_query(5) print(value) ``` 在上面的示例中,我们创建了一个大小为10的树状数组,并对区间[2, 6]的值进行了修改,将其加3。然后,我们查询了位置5的值,结果为3。 希望以上内容能够帮助到你实现树状数组区间修改单点查询。如果还有其他问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值