深度学习
文章平均质量分 62
小白开始深度学习经验分享专栏
旺仔溜溜没
科研界的泥石榴一枚~~~
展开
-
深度学习时遇到tensor([0.], device=‘cuda:0‘)等输出
很有可能是更改了ultralytics文件夹中的某一个文件导致的,我以为是因为我更新了几个模块导致的出错,尝试了很多方法比如关掉详细输出修改模块以及将环境恢复至原始状态,但是都没有解决。其实以前运行也遇到过类似问题,换了我师姐给的ultralytics文件夹后就解决了,也不知道啥原理。所以这次还是把现在的ultralytics文件夹给删除,换成最初的ultralytics文件夹,再运行就正常了!所以这次还是把现在的ultralytics文件夹给删除,换成最初的ultralytics文件夹,再运行就正常了!原创 2024-09-11 09:09:34 · 557 阅读 · 0 评论 -
然给看看是哪个小傻瓜还在随意修改数据集名称导致训练失败
修改数据集后训练已知出现train: No labels in train.cache,还以为是路径出错了,花了好几个小时去核对路径,后来看知道这篇文章才发现不能随便修改数据集的名字!划重点:images和labels的名字不能改变!划重点:images和labels的名字不能改变!┗|`O′|┛ 嗷~~,是我自己╮(╯▽╰)╭。原创 2024-09-10 15:36:19 · 115 阅读 · 0 评论 -
深度学习之自己制作数据集
在Python中编写一个脚本,在Visual Studio中运行,并处理文件夹中不同格式的照片(如。我所需要的数据集网上没有,只能自己搜寻,搜集了1000张左右,格式和名字、大小并不统一。(Python Imaging Library)库,结合。库来批量处理这些图像文件。以下是示例代码,可以将所有。每隔一秒截取视频并保存为图片,可以使用。, 等),按顺序将它们重命名为从。使用 Python 的。原创 2024-08-16 21:12:04 · 407 阅读 · 0 评论 -
深度学习之下载数据集(6)
有些大学或研究机构也会提供食物相关的公开数据集。可以通过学校网站或Google Scholar进行搜索。: 许多开发者会在GitHub上分享他们的工作和数据集。你可以搜索与xx相关的项目,查看其中是否包含数据集。提供了大量用户上传的各种类型数据集。你可以在其中搜索与xx相关的关键词。是一个专门用来搜索公开数据集的工具。你可以在其中搜索你需要的xx数据集。你可以在这些平台上搜索具体的xx相关数据集,找到适合你需要的数据。原创 2024-08-16 08:57:01 · 246 阅读 · 0 评论 -
深度学习之YOLOV10训练自己的数据集二之训练前检查篇(5)
在实际训练过程中,问题还是很多的,我忽略了输入一个显示训练时间的指令,所以我也不知道训练到哪一轮,而且在训练时出现了很多大量的 False 值,并且在训练过程中没有实时模型训练进度输出显示。在检查之前可以先把先前训练过的数据删除,在runs文件夹里面,可以根据生成日期去查找缓存文件。原创 2024-08-09 16:19:54 · 826 阅读 · 0 评论 -
nVidia安装失败打不开图像界面:NVIDIA-SMI has failed because it couldn‘t communicate with the NVIDIA driver. Make
如何在开机时打开GRUB界面, 在开机显示电脑图标的时候,我的电脑是同时多次按住shift+esc按键可以跳出界面,注意跳出来就不要按其他按键!根据第二篇从头到尾做了一遍,然后又根据第一篇博客进入系统选择内核,然后图像界面就出来了。原创 2024-08-09 10:47:22 · 249 阅读 · 0 评论 -
深度学习之NVIDIA驱动程序550的手动安装和配置(成功版)
在训练数据集时遇到了驱动程序和cuda-11.8版本不匹配导致训练失败,检查驱动程序显示没有,重新下载驱动程序发现电脑上的驱动程序自动下载安装的话只能到384,所以这篇文章主要是教大家如何手动安装和配置NVIDIA-550版本。手动安装高版本的 NVIDIA 驱动程序(如 550版本)到电脑上通常可以正常使用,但需要确保安装过程正确且与现有系统和 CUDA 版本兼容。以下是官网查询到的版本兼容性列表:驱动程序本身并不决定计算能力,而是显卡的架构和型号决定的。原创 2024-08-09 10:40:36 · 1488 阅读 · 0 评论 -
深度学习之YOLOV10训练自己的数据集一(4)
yolov10在训练数据集之前所需要的环境配置请看前三篇文章:我使用的是现有的数据集,没有数据集的伙伴们根据上面这篇博文去建立自己的数据集哈。YOLOv10 默认使用的是 YOLO 格式的标签文件(.txt文件)。如果你的标签文件是 XML 格式(如 Pascal VOC 格式),你需要先将它们转换为 YOLO 格式。1. 转换 XML 文件为 YOLO 格式首先,创建一个 Python 脚本,将 Pascal VOC 格式的 XML 文件转换为 YOLO 格式的文本文件。导航到yolo-main。原创 2024-07-21 15:58:30 · 747 阅读 · 1 评论 -
深度学习之训练数据集时遇到GCC版本不匹配
若电脑上有别人的环境,直接更改会影响其他环境的运行,安装多版本的 GCC,并根据需要切换版本。安装多个版本后,可以使用 update-alternatives 命令来管理和切换不同的 GCC 版本。执行到第三步,会出现很多问题,比如说我电脑上的就会说我正在使用的脚本是python2,但是我查询出来的版本是3.8.8,出现的问题粘到大模型里面问问,这里就不再详细叙述。通过这种方式,你可以在不影响其他系统环境的情况下,为特定的 Conda 环境配置所需的 GCC 版本。1.添加新版本 GCC 的存储库。原创 2024-07-18 08:36:56 · 238 阅读 · 0 评论 -
深度学习之pytorch编译
从github下载的zip文件里面不包含git库,只能在终端使用git clone下载,网络不稳定就会报很多错误。在训练自己的数据集的时候会遇到各种各样的问题,其中pytorch编译就是一个很麻烦的问题。运行问题:目标路径 'third_party/FP16' 已经存在,并且不是一个空目录。对于每个失败的子模块,手动克隆并放置到相应的目录中。方法 2:进入已有目录并继续克隆。方法 1:删除目录并重新克隆。原创 2024-07-17 09:30:49 · 842 阅读 · 0 评论 -
深度学习之yolov10模型测试(3)
ubuntu系统中配置好了yolov10,现在进行模型测试查看效果。原创 2024-07-14 15:49:18 · 1151 阅读 · 0 评论 -
深度学习之linux环境中配置Python3.9.0(1)
前景提要:最近有一个项目需要使用深度学习做图像分类,看了一些文章和视频后决定先搭建框架,想法是使用yolov10来做图像分类,这只是一个想法,后面还可能会改变。yolov10要求的环境以及版本高,python要3.9及以上,torch要2.0.1,电脑配置有些低,需要重新创建环境配置yolov10.原创 2024-07-10 16:05:34 · 261 阅读 · 0 评论 -
深度学习之linux环境搭建----安装pytorch2.0.1和CUDA11.8配置yolov10(2)
首先,上一篇讲述了python3.9.0的安装。所需的python3.9已经安装好了,还需要安装pytorch2.0.1和CUDA11.8.(注意torch版本要和CUDA对应)简直了!这篇文章和我所要搭建的环境一模一样。但是第一步就发现了问题:安装版本高于系统运行版本电脑上还有其他人的数据集,系统的CUDA版本是11.3,但现在环境yolov10需要配置的版本为11.8。chatgpt给出的解决方案:要在不影响系统其他环境运行的情况下为yolov10。原创 2024-07-13 10:34:32 · 1258 阅读 · 1 评论