首先,上一篇讲述了python3.9.0的安装。没安装好的小伙伴们先去看这一篇:深度学习之linux环境中配置Python3.9.0-CSDN博客
所需的python3.9已经安装好了,还需要安装pytorch2.0.1和CUDA11.8.(注意torch版本要和CUDA对应)
参考文章:手把手教你在linux上安装pytorch与cuda_linux系统下安装pytorch和cuda-CSDN博客
简直了!这篇文章和我所要搭建的环境一模一样。
但是第一步就发现了问题:安装版本高于系统运行版本:Ubuntu20.04下更换CUDA版本_cuda版本高了怎么办-CSDN博客
电脑上还有其他人的数据集,系统的CUDA版本是11.3,但现在环境yolov10需要配置的版本为11.8。chatgpt给出的解决方案:
要在不影响系统其他环境运行的情况下为yolov10
环境配置高版本的CUDA,可以按照以下步骤操作:
1. 安装CUDA 11.8
首先,下载并安装CUDA 11.8,但不覆盖现有的CUDA 11.3。确保你有多个CUDA版本共存。
下载CUDA 11.8:
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
chmod +x cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
按照提示进行安装,但不要安装驱动(如果已安装且工作正常)。
安装这一步很漫长,也可能是我网络的问题。4.04G安装了一个小时左右。
参考文章:https://zhuanlan.zhihu.com/p/612556391
-_-不知道点了什么,直接signal caught,cleaning up,好像一切都白费了,裂开。·^·。
重头再来一次!
2. 安装CuDNN(针对CUDA 11.8)
下载并安装适用于CUDA 11.8的CuDNN。解压并复制文件:
代码需要根据自己环境配置得路径更改!!!中间得空格记得加上
cd ~/Downloads
tar -xf cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz
sudo cp cuda/include/cudnn*.h /usr/local/cuda-11.8/include/
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-11.8/lib64/
sudo chmod a+r /usr/local/cuda-11.8/include/cudnn*.h /usr/local/cuda-11.8/lib64/libcudnn*
进入cudnn官网,注册账号后,点击Download cuDNN library----点击tarball and zip----点击最上面那个cudnn就可以找到版本啦^-^。
看不懂的参考这篇文章:https://zhuanlan.zhihu.com/p/627198200
3.确保CUDA 11.8安装正确
首先,确认CUDA 11.8已经正确安装在 /home/***/cuda-11.8
路径下。你可以使用以下命令检查:
/home/***/cuda-11.8/bin/nvcc --version
显示build.....就安装好了^^
4. 创建虚拟环境
创建一个新的虚拟环境yolov10-env
:
python3 -m venv yolov10-env source yolov10-env/bin/activate
- 若已创建环境,查找系统中所有的环境,在这里可以看到环境的位置。
conda env list
- 直接在终端中激活
yolov10
虚拟环境:
source /home/***/***/envs/yolov10/bin/activate
如果这一步报错,bin文件夹中没有activate文件,这通常表示你的虚拟环境可能没有正确创建或激活脚本被移动或删除。
重新创建虚拟环境
删除现有的虚拟环境(如果需要,可以备份重要数据):
conda remove --name yolov10 --all
重新创建虚拟环境:
conda create --name yolov10 python=3.9.0
激活新创建的虚拟环境:
conda activate yolov10
5. 配置虚拟环境中的环境变量
-
创建 Conda 激活脚本目录(如果不存在):
mkdir -p /home/lab406/anaconda3/envs/yolov10/etc/conda/activate.d
-
创建激活脚本:
nano /home/lab406/anaconda3/envs/yolov10/etc/conda/activate.d/env_vars.sh
-
在文件中添加以下行:
export PATH=/home/lab406/cuda-11.8/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/home/lab406/cuda-11.8/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
-
保存并退出编辑器。
ctrl+o保存,ctrl+x退出
6. 安装PyTorch和相关库
在激活的虚拟环境中,安装PyTorch 2.0.1和相关库,并确保使用CUDA 11.8:
pip install torch==2.0.1+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -f https://download.pytorch.org/whl/torch_stable.html
下载了一个whl文件,2.3GB ,看个人网速,我下了大概半小时左右。
下载后报错了o-^-o,师姐说这个看运气,很少有人能一次性弄好的,平衡了*~*使用了清华的镜像源。
pip install torch==2.0.1+cu118 torchvision==0.15.1+cu118 torchaudio==2.0.1+cu118 -i https://pypi.tuna.tsinghua.edu.cn/simple -f https://download.pytorch.org/whl/torch_stable.html --default-timeout=100
这个又报错了,指定的 torch
和 torchvision
版本之间存在依赖冲突。torchvision 0.15.1+cu118
依赖于 torch==2.0.0
,指定了 torch==2.0.1+cu118
。
pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.1+cu118 -i https://pypi.tuna.tsinghua.edu.cn/simple -f https://download.pytorch.org/whl/torch_stable.html --default-timeout=100 --default-timeout=100
不行,还是报错。
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
被耍了,这个下载的是pytorch2.3.1!!!,如果要下载特定版本要指明:
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.1 pytorch-cuda=11.8 -c pytorch -c nvidia
电脑内存不够,只能重新删了环境配置的内容再从头开始o_o
最终解决方案:
使用 Conda 安装
安装 PyTorch:
conda install pytorch==2.0.1 pytorch-cuda=11.8 -c pytorch -c nvidia
安装 torchvision:
conda install torchvision==0.15.2 -c pytorch -c nvidia
安装 torchaudio:
conda install torchaudio==2.0.1 -c pytorch -c nvidia
7.启动 Python 解释器
在激活的虚拟环境中启动 Python 解释器:
python
验证 PyTorch 安装
在 Python 解释器中运行以下代码以检查 PyTorch 是否正确安装,并验证 CUDA 是否可用:
import torch
print("PyTorch Version:", torch.__version__)//注意这里是两个_
print("CUDA Available:", torch.cuda.is_available())
print("CUDA Version:", torch.version.cuda)
输出:2.0.1 True 11.8!congradulations!
通过这些步骤,你可以在不影响系统其他环境的情况下,为yolov10
环境配置CUDA 11.8。如果遇到任何问题,可以随时回滚环境变量设置并检查相关配置文件。