E - Sugoroku 4(abc)

E - Sugoroku 4

传送门

在这里插入图片描述
题意:0 - n 长度得数轴,每次走骰子为1-m得长度,若超过长度n则折回超过得长度,总共走k次,统计k次走到n得概率
例如: n = 4, m = 4, k = 3,初始位置为0;
若第一次骰子为3, 0->3;
若第二次骰子为3,3->2;
若第三次骰子为3,2->3.

样例输入

10 5 6

样例输出

184124175

题解:
骰子得概率都为 1 m \frac{1}{m} m1 ,即统计到n得方案数 f f f,概率即为 f ∗ 1 m f * \frac{1}{m} fm1;
1 m \frac{1}{m} m1即用乘法逆元表示,即 m p − 2 m^{p - 2} mp2,总共骰k次
概率即为 ∑ i = 1 k f ∗ m p − 2 概率即为\sum _{i = 1}^{k}{f * m^{p - 2}} 概率即为i=1kfmp2
f [ i , j ] f[i, j] f[i,j]表示前i次骰子,走到j得方案数.
时间复杂度为 O ( n m k + l o g m o d ) O(nmk + logmod) O(nmk+logmod)

#include <unordered_map>
#include <cstring>
#include <algorithm>
#include <iostream>

using namespace std;
typedef long long LL;
const int N = 1e3 + 10, mod = 998244353;
LL n, m, k;
LL f[N][N];

LL qmi(int a, int b, int p)
{
    LL res = 1;
    while (b)
    {
        if (b & 1) res = res * a % p;
        a = a * (LL)a % p;
        b >>= 1;
    }
    return res;
}

void solve() {
	cin >> n >> m >> k;
	f[0][0] = 1;
	LL p = qmi(m, mod - 2, mod);   
	for(int i = 1; i <= k; i ++ )
	{
		for(int j = 0; j < n; j ++ )
		{
			for(int z = 1; z <= m; z ++ )
			{
				int t = (j + z);
				if(t > n) t = 2 * n - t;
				f[i][t] += (f[i - 1][j] * p) % mod;
				f[i][t] %= mod;
			}
		}
	}
	LL sum = 0;
	for(int i = 1; i <= k; i ++ )
		sum = (sum + f[i][n]) % mod;
	cout << sum << endl;
}

int main() {
	int T = 1;
	while (T--) {
		solve();
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值