自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 解决pip安装库速度慢的问题

深度学习库安装的简洁方式 -命令行命令行操作方式国内镜像源命令行操作方式适用范围:配置全局镜像后,但是库下载的速度仍然不容乐观,可以考虑采取下面的方法(有些多此一举的嫌疑,但是确实好用)://在pycharm或者cmd命令行中输入以下命令即可pip install xxx -i http://pypi.douban.com/simple --trusted-host pypi.douban.com //xxx为要安装的软件pip install xxx -i http://pypi.do

2021-04-09 21:40:43 258

原创 @RequestMapping理解

作用:用来映射URL属性:Value:请求的URL(Value字符可以缺省)、Method:请求方法、Params:请求参数、Headers:请求头用法:类定义处:规定初步的请求映射,相对于web应用的根目录;方法定义处:进一步细分请求映射,相对于类定义处的URL。如果类定义处没有使用该注解,则方法标记的URL相对于根目录而言;@Controller@RequestMapping(value="/example")public class HelloWorld {

2022-04-04 17:01:06 172

原创 【排序】 冒泡排序 Bubble Sort

冒泡排序,思想如同其名。如同冒泡的过程一样,一个数字(最小或最大的数字)不断上浮,对数组不断重复这个过程,最终使得数组变得有序。过程:因为需要遍历n次,所以每一次遍历时,只需专注于不断比较相邻的值,最终能够将最大值移到末尾。因为每次已经将最大值移到末尾,则无需比较该值,所以在每次遍历时,遍历的长度都会减1。动画效果:package lc_test;import java.util.*;public class test{ public static void mai.

2022-01-14 17:27:41 185

原创 ++i与i++的区别

首先,从语意上来理解两者的直观区别就是++的位置不同,借助位置来帮助理解。++i 返回的是+之后的值,因为i在++后面i++返回是+之前的值,因为i在++前面其次,利用代码来理解++i 相当于:i=i+1; return i;i++ 相当于:temp = i ; i = i + 1; return temp;仅做个人记录使用,若有错误,望指正...

2021-11-03 21:00:35 251

原创 log的底数的含义

最近一直在研究算法,无论是计算机算法概论、还是数据结构书中,关于算法的时间复杂度很多都用包含O(logN)这样的描述,但是却没有明确说logN的底数究竟是多少。解答:算法中log级别的时间复杂度都是由于使用了分治思想,这个底数直接由分治的复杂度决定。如果采用二分法,那么就会以2为底数,三分法就会以3为底数,其他亦然。底数为2 log100 的意思是 对100采用二分法最多能分多少次(想上取整),三分法同理。不过无论底数是什么,log级别的渐进意义是一样的。也就是说该算法的时间复杂度的增长与处理

2021-10-31 11:24:33 4808

原创 关于wgan-gp的loss值的问题

问题:有人训练的wgan-gp,判别器器损很高,但是生成器的损失函数为0,是否代表生成器效果太好?个人遇到的问题:生成器逐渐升高,不收敛。但是判别器的loss收敛回答:That’s not a problem, your charts look okay. The generator loss is actually meaningless by itself, since the critic’s loss is invariant to any constant offset (I.e. A .

2021-09-03 17:19:07 4657

原创 java中父类的私有方法继承问题

Java父类中的私有方法是不能被继承到的!有个很形象的说法就是,你不可能代替你父亲去吃饭。但是父类中私有属于是可以被继承到的,debug可以在子类中的属性看到,但是不能调用,只能借助方法对其进行操作。仅作为个人记录使用,若有错误望指正...

2021-08-28 18:47:15 1503

原创 激活环境失败-bash: activate:No such file/没有那个文件或目录 或者 服务器 conda:未找到命令

出现这个问题的原因是,因为Ancona的环境变量出错,把当前的Ancona环境变量重新加载进去即可仅拿Linux系统或Linux服务器举例:在终端输入以下指令export PATH="~/anaconda3/bin:$PATH" #把当前Ancona的PATH添加进去source activate YourEnvs_name仅做个人记录使用,若有错误,望指正...

2021-07-01 11:13:07 6022 1

原创 conv1d 计算

conv1d参数conv1d计算的其中dilation默认值为1

2021-06-30 10:12:22 406

原创 GAN写程序记录

程序名:pytorch-GAN-timeseries建议:据报道,在使用gan生成序列的若干工作中,循环鉴别器通常比卷积鉴别器更不稳定。因此,我推荐使用基于卷积的方法。我没有对超参数和训练程序进行广泛的搜索,定性评估是唯一容易实现的。如果配置了一个目标任务(例如,学习一个策略),可以获得直观的和定量的评估,并用于选择最佳的模型。在实际生成的性能和关于输入增量的错误之间有一点折衷。如果在delta上有轻微的精度对最终任务不是问题,它的误差可以忽略;如果想要尽可能地减少增量上的误差,可...

2021-06-29 16:10:23 149

原创 2017 Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs

AbstractGAN在生成数据方面取得了瞩目的成效,作者提出了两种GAN应用于医疗数据方面,RGAN和RCGAN,用于生成多维的时间序列数据。RGAN,在生成器和分类器上都采用RNN架构。RCGAN,同样也都是在生成器和分类器上采用RNN架构,但是这两个RNN需要辅助信息作为条件。利用一组玩具数据来进行验证,最终通过直观和定量性(样本似然性和mmd【最大平均差异】)发现能够很好的生成时间序列数据。同时作者又提出一种新的评价GAN的指标,生成数据作为训练集然后训练模型,然后真实数据作为测试集进行模型性能.

2021-06-18 10:46:14 457

原创 自用—时间序列数据、RNN、LSTM 中输入形式的记录

time_size: 时间步长,时间序列的长度序列长度(sequence length)也可以理解为时间步(time step)比较好理解。比如一个语音输入,语音的长度就是序列长度。input size表示一次输入的特征向量的大小。比如上面的全连接层神经网络,当batch_size为1是,输入的shape就是1x3是不是脉搏就可以看做 输入的特征是1 因为是一通道的,图例是3通道的例如这样一个数据集合,总共100条句子,每个句子20个词,每个词都由一个80维的向量表示。在lstm中,单个样本即单条句

2021-06-18 10:05:48 1904 1

原创 No dashboards are active for the current data set Tensorboard解决办法

把 tensorboard --logdir=路径 中的路径用绝对路径替换即可

2021-06-15 09:06:01 91 1

原创 Win10 任务栏天气关闭方法

右击任务栏选择资讯和兴趣,然后点击关闭

2021-06-15 08:56:11 1746 4

原创 2017 Data Augmentation of Wearable Sensor Data for Parkinson’s Disease Monitoring using Convolutiona

摘要本篇论文主要还是采用CNN,因为CNN广泛应用到很多领域(2017年),还是因为可用数据的有限,所以采用数据增强【简单的数据扩充】,最终使分类准确率从77.54%提升到86.88%数据增强 for wearable sensor data(1) 通过扰动窗口或事件的位置来增加数据(2) 抖动法、缩放法、裁剪法、旋转法、置换法、震级翘曲法和时间翘曲法CNN架构总结因为GAN是2016才提出应用的,所以在这几篇论文中还没有提出应用GAN...

2021-06-08 10:53:46 290

原创 python __call___ 函数的理解

_ _ cal l_ _ 与其他方法对比即看发现异同创建一个Person类,里面定义 call 和 hello两种方法__call__的调用可以直接用实例化对象名调用,即不会出现person.__call__的形式。根据下图也可以看出需要填的参数是name1结果展示也可以用person.__call__调用...

2021-06-07 16:02:34 245 1

原创 2016 Data Augmentation for Time Series Classification using Convolutional Neural Networks

摘要CNN分类常用于计算机视觉和语言识别,但是很少用于时间序列分类。因为设计了一个有两层卷积层的CNN用于作时间序列分类。CNN的一个缺点就是需要大量的有效数据去训练。针对这个缺点提出了两个解决方案:(1)数据扩充 (2)利用来自不同数据集的训练时间序列以半监督的方式学习网络Introduction文献中关于时间序列分类的方法主要有两种:(1)distance-based【基于距离】【在原始数据上直接出来,根据原始数据相似性进行分类】【常用方法:DTW、ED、DTW与K-NN组合】 (2)featu.

2021-06-06 20:45:11 638

原创 对象数组的理解以及思考

记录

2021-05-29 10:32:59 295

原创 对数组以及遍历数组长度的思考

1.一维数组在内存中的存储方式数组名,位于栈中 。数组,开辟一段连续地址,位于堆中。数组名指向数组的首地址。2.多维数组拿二维数组举例:二维数组举例,二维数组的数组元素是一维数组,数组元素指向一维数组的首地址。其他高维数组也是同理,一层一层的指向低维数组,直到指向一维数组从数组底层的运行机制来看,其实没有多维数组3.遍历数组长度由上边可以知道,拿三维数组举例,A(3,5,2),A数组就是包含3个二维数组(二维数组:5个长度为2的一维数组),从内存层面看,A只不过是一个长度为3的一维数组,只

2021-05-18 18:24:53 181

原创 python 类中__init__ 的思考

明确一点,__init__在类中所起到的作用是,对实例化的类的属性进行初始化【说点人话,创建一个类,就相当于对一个event进行共性提取,提取出来的共性就是属性,此时仅仅是纸上谈兵阶段。而类的实例化就是对纸上谈兵的东西进行落地、应用。针对event的细节不同去进行属性的修改】拿学生的例子举例,学生这个群体的主要几个属性,无非是姓名、性别、成绩selfself.Name = nameself.<属性名> = 参数含义:向stu_1类中的名字属性赋值.

2021-05-13 23:12:53 132

原创 python numpy 剔除数组中重复元素、行、列

np.unique(data)剔除data中重复元素np.unique(data,axis=0)剔除data中重复行np.unique(data,axis=1)剔除data中重复列仅作个人记录,若有错误,望指正

2021-05-12 14:52:04 1790

原创 numpy.reshape及降低维度或升维的思考

最近,由于程序最终需要涉及到保存数据,二维数据是可以直接可视化看到的。自己程序生成的是三维数据,需要保存成二维数据。 由此引发了对reshape的一些思考。我的数据初始维度是(55,2000) 有55个人的生理数据,一个人生理数据截取2000个点通过网络的预处理(对上面的数据进行切片【切片大小为24】,切片是在55维度上进行步进式切片)导致了数据维度的增加,变为(31,24,2000) 即有31个 24*2000的列表(根据numpy格式的直观解释)【升维】保存数据,需要保存为二维数据(,20

2021-05-12 13:00:53 1843

原创 python批量安装包、导入requirements.txt文件方法

requirements.txt文件就将当前环境中的配置给导出来1.导出pip freeze > requirements.txt读取requirements.txt、即批量安装包2.python环境导入pip install -r requirement.txt3.anaconda环境导入conda install --yes --file requirements.txt仅做个人记录,若有错误,望指出..

2021-04-24 19:29:45 799

原创 PackagesNotFoundError: The following packages are not available from current channels解决办法

终端输入:conda config --add channels conda-forge

2021-04-24 17:10:27 33809 39

原创 计算机基础知识-路径-在window、Linux系统中的应用

计算机基础知识-路径-在window、Linux系统中的应用基础知识Window系统中的应用Linux系统中的应用基础知识路径分为绝对路径以及相对路径绝对路径:精准路径文件在本地真正存在的路径,一般指从硬盘的根目录起始,一级一级的指向文件的路径。(最精准的路径)计算机内部执行该命令时,也是回归到根目录一级一级的去读取。举例:想要读取该图片PATH = "F:\\test\\picture\\test_picture.png"相对路径:相对于当前文件夹位置的路径

2021-04-14 10:38:33 448

原创 解决:ProxyError: Conda cannot proceed due to an error in your proxy configuration

将代理关掉即可,(把科学上网的东西关掉即可)

2021-04-12 10:17:21 1163

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除