#include <stdlib.h>
int gcd(int m, int n)
{
if(m*n == 0)
return m == 0?n:m;
if(m>n)
return gcd(m%n,n);
else
return gcd(n%m,m);
}
int* sumFracts(int lst[][2], int row)
{
int *result = (int *)malloc( 2 * sizeof(int) );
int i, gcd1;
result[0] = lst[0][0];
result[1] = lst[0][1];
for( i = 1; i < row; i++ )
{
result[0] *= lst[i][1];
result[0] += result[1] * lst[i][0];
result[1] *= lst[i][1];
gcd1 = gcd( result[0], result[1] );
result[0] /= gcd1;
result[1] /= gcd1;
}
return result;
}
6 — Irreducible Sum of Rationals
这段代码包含两个函数,gcd用于计算两个整数的最大公约数,sumFracts用于计算一系列分数的和并简化结果。通过递归实现欧几里得算法找出最大公约数,分数求和中每次将新分数转换为与当前和相同分母的形式,并更新和,最后去除分子和分母的最大公约数。
摘要由CSDN通过智能技术生成