6 — Irreducible Sum of Rationals

这段代码包含两个函数,gcd用于计算两个整数的最大公约数,sumFracts用于计算一系列分数的和并简化结果。通过递归实现欧几里得算法找出最大公约数,分数求和中每次将新分数转换为与当前和相同分母的形式,并更新和,最后去除分子和分母的最大公约数。
摘要由CSDN通过智能技术生成
#include <stdlib.h>
int gcd(int m, int n)
{
   if(m*n == 0)
      return m == 0?n:m;
    if(m>n)
        return gcd(m%n,n);
   else
    return gcd(n%m,m);
 }

int* sumFracts(int lst[][2], int row) 
{
int *result = (int *)malloc( 2 * sizeof(int) );
int i, gcd1;

 result[0] = lst[0][0];
result[1] = lst[0][1];
  for( i = 1; i < row; i++ )
  {
   result[0] *= lst[i][1];
   result[0] += result[1] * lst[i][0];
   result[1] *= lst[i][1];
 
   gcd1 = gcd( result[0], result[1] );
   result[0] /= gcd1;
   result[1] /= gcd1;
 }

 return result;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值