动态规划解决矩阵连乘问题

动态规划解决矩阵连乘问题



动态规划

1.要素

动态规划两大要素:最优子结构、重叠子问题
最优子结构:当问题的最优解包含了其子问题的最优解时,该问题具有最优子结构性质
重叠子问题:在用递归算法自底向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算,具有子问题重叠性质。这类问题称重叠子问题

2.基本思想

将待求解问题分解成若干个子问题,先求解子问题,然后结合这些子问题的解得到原问题的解。求解的问题经分解得到的子问题往往不是相互独立的

3.适用于解最优化问题步骤

1)找出最优解的性质,并刻画其结果特征(分析最优解结构
2)递归地定义最优解(建立递归关系
3)以自底向上的方法计算得到的信息,构造最优解(计算最优解
4)根据计算最优值得到的信息,构造最优解(构造最优解
1)2)3)为基本步骤


提示:以下是本篇文章正文内容,下面案例可供参考

一、矩阵连乘问题

给定n个矩阵{A1,A2,…,An},其中,Ai与Ai+1是可乘的,(i=1,2 ,…,n-1)。用加括号的方法表示矩阵连乘的次序,不同的计算次序计算量(乘法次数)是不同的,找出一种加括号的方法,使得矩阵连乘的次数最小。

规则

若一个矩阵连乘积的次序完全确定,也就是说该连乘积已完全加括号,则可反复调用2个矩阵相乘的标准算法计算出矩阵连乘积
完全加括号的矩阵连乘积可递归地定义为:
1)单个矩阵是完全加括号的
2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积在加括号,即A=(BC)

矩阵可乘的条件

矩阵A和B可乘的条件是矩阵A的列数等于矩阵B的行数

计算的次序对计算量的影响

例如:

              A1是A(5*10)的方阵;

              A2是A(10*100)的方阵;

              A3是A(100*2)的方阵;

那么有两种加括号的方法:

1.(A1A2)A3;
2. A1(A2A3);

 第一种方法的计算量:5*10*100+5*100*2=6000;

 第二种方法的计算量:10*100*2+5*10*2=2100;

 可以看出不同计算方法计算量差别很大。

二、动态规划

1.分析:

1.矩阵连乘的条件:第一个矩阵的列等于第二个矩阵的行,此时两个矩阵是可乘的;
2. 多个矩阵连乘的结果矩阵,其行列等于第一个矩阵的行和最后一个矩阵的列;
3.两个矩阵相乘的计算量
矩阵Amn和Bnk的乘法运算次数为:mnk

2.矩阵连乘AiAi+1Ai+2……Aj的最优解问题

假设在第k位置上找到最优解,则问题变成了两个子问题:(AiAi+1……Ak),(Ak+1……Aj)

用m[i][j]表示矩阵连乘的最优值,那么两个子问题对应的最优值变成m[i][k],m[k+1][j];

设矩阵Am的行数为Pm,列数为qm,矩阵是可连乘的,即相邻矩阵qm=Pm+1,所以(AiAi+1……Ak)可表示为Pi * qk,

(Ak+1……Aj)可表示为Pk+1 * qj,qk = Pk+1.则两个矩阵连乘的乘法次数为Pi * Pk+1 * qj。

3.矩阵连乘最优值递归式:

在这里插入图片描述

代码如下(示例):

#include<iostream>
#include<cstring> 
using namespace std;
 
const int size=100;
int p[size];
int m[size][size],s[size][size];
int n;
 
void matrixchain()
{
	int i,r,j,k;
	memset(m,0,sizeof(m));
	memset(s,0,sizeof(s));//初始化数组
	for(r=2;r<=n;r++)//矩阵连乘的规模为r 
	{
		for(i=1;i<=n-r+1;i++)
		{
			j=i+r-1;
			m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];//对m[][]开始赋值
			s[i][j]=i;//s[][]存储各子问题的决策点
			for(k=i+1;k<j;k++)//寻找最优值
			{
				int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
				if(t < m[i][j])
				{
					m[i][j]=t;
					s[i] [j]=k;
				}
			}
		}
	}
}
 
void print(int i,int j)
{
	if(i == j)
	{
		cout<<"A["<<i<<"]";
		return;
	}
	cout<<"(";
	print(i,s[i][j]);
	print(s[i][j]+1,j);//递归1到s[1][j]
	cout<<")";
}
 
int main()
{
	cout<<"请输入矩阵的个数n : "<<endl;
	cin>>n;
	int i,j;
	cout<<"请依次输入每个矩阵的行数和最后一个矩阵的列数:"<<endl;
	for(i=0;i<=n;i++)
		cin>>p[i];
	matrixchain(); 
	print(1,n);
	cout<<endl;
	cout<<"最小计算量的值为:"<<m[1][n]<<endl;
	
	return 0;
}

总结

`东塔规划的时间复杂度为O(n3),远远优于穷举搜索法

  • 10
    点赞
  • 101
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值