机器学习笔记

第一节 机器学习和深度学习的区别

区别:机器学习需要人为提取特征,深度学习通过大量数据训练自动得到模型,不需要人为特征提取

2.深度学习代表算法:神经网络

神经网络:输入层,隐藏层、输出层

输入层一般是特征,采用线性回归的方式连接到隐藏层,在通过神经元(激活函数),连接到输出层(最后一个输出层也叫做全连接层)

第二节 深度学习的介绍

1.与深度学习息息相关的三个名词:算力(GPU加速),算法创新(主要是损失函数的创新),数据。

第三节 逻辑回归(主要用于二分类问题)用于得出预测结果(回归到0~1之间)

1.Logistic回归

①输入特征向量

②参数:权重加偏置

③输出预测结果:y=sigmod(w^{T}+b),sigmod:\frac{1}{1+e^{-z}},z的结果非常大时趋于1,z非常小时趋于0

2.逻辑回归的损失函数

作用:用于衡量测试结果与真实值之间的误差

逻辑回归一般的损失函数为:L(y,y\hat{})=-(ylogy\hat{})-(1-y)log(1-y\hat{})

解读:目标值为1时,想要损失越小(要趋于0),y^就要趋于1

              目标值为0时,想要损失越小(要趋于0),y^就要趋于0

3.梯度下降算法

作用:使得损失函数取得最小值

目的:寻找使得损失函数取得最小值的权重w,偏置b

4.导数的定义式

f{}'(xo)=lim\frac{f(x)-f(x0)}{x-x0}(x\rightarrow x0)

导数更新公式:

w:=w1-\alpha \frac{dJ(w1,b)}{dw1}

b:=b-\alpha\frac{J(w,b)}{db}

\alpha是学习率

5.向量化编程(使用numpy)

矩阵的计算np.dot(a,b),避免使用for循环因为耗时。

逻辑回归的m个样本的向量化编程(伪代码如下):

6.实现Sigmoid gradient(梯度)

def sigmoid_derivative(x):
    s = sigmoid(x)*(1-sigmoid(x))
    return ds

7.单神经元神经网络实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值