第一节 机器学习和深度学习的区别
区别:机器学习需要人为提取特征,深度学习通过大量数据训练自动得到模型,不需要人为特征提取
2.深度学习代表算法:神经网络
神经网络:输入层,隐藏层、输出层
输入层一般是特征,采用线性回归的方式连接到隐藏层,在通过神经元(激活函数),连接到输出层(最后一个输出层也叫做全连接层)
第二节 深度学习的介绍
1.与深度学习息息相关的三个名词:算力(GPU加速),算法创新(主要是损失函数的创新),数据。
第三节 逻辑回归(主要用于二分类问题)用于得出预测结果(回归到0~1之间)
1.Logistic回归
①输入特征向量
②参数:权重加偏置
③输出预测结果:y=sigmod(),sigmod:,z的结果非常大时趋于1,z非常小时趋于0
2.逻辑回归的损失函数
作用:用于衡量测试结果与真实值之间的误差
逻辑回归一般的损失函数为:
解读:目标值为1时,想要损失越小(要趋于0),y^就要趋于1
目标值为0时,想要损失越小(要趋于0),y^就要趋于0
3.梯度下降算法
作用:使得损失函数取得最小值
目的:寻找使得损失函数取得最小值的权重w,偏置b
4.导数的定义式
导数更新公式:
是学习率
5.向量化编程(使用numpy)
矩阵的计算np.dot(a,b),避免使用for循环因为耗时。
逻辑回归的m个样本的向量化编程(伪代码如下):
6.实现Sigmoid gradient(梯度)
def sigmoid_derivative(x):
s = sigmoid(x)*(1-sigmoid(x))
return ds
7.单神经元神经网络实现