一、风控模型岗位职责
1、探索性数据分析
相信绝大多数的建模者都是在这里花费的时间精力最多,众所周知,建模工作的基础就是数据,这一阶段的主要任务就是要了解目前有什么数据,以及数据维度的定义,这些数据是否凡在模型中使用。
2、特征工程
主要是通过探索性数据分析得出的数据后,基于数据去解决目前的问题。
3、模型构建
模型做的好不好,都是业务说了算。模型上线后,需要不断的优化迭代,进一步改进优化。
二、风控模型岗位所需技能
1、技术能力
我们看到很多招聘模型的JD上都是明确标注,学历和专业,因为模型岗位所需的技术能力是非常多的,除了基础的编程能力(通常要求熟悉使用2种以上编程语言),还需要有大数据平台技术。一般面试的时候,会在最后环节会要求面试者现场写代码。
2、理论知识
这里说的理论知识主要是数学知识,概率论,高数等等。因为在机器学习当中通常要使用一定的数据基础。
3、其他知识
剩下的都是一些常识的知识,一般在行业里面沉淀两年都是足够了。比如常见的数据指标的定义,比如业务流程的逻辑等等。需要不断在实操中不断的积累完善。
三、风控策略和风控模型的区别
1、首先,需要明确的一个概念是,无论是风控策略岗还是风控模型岗都是风控的一部分,并不是全部。
2、其次,风控策略和风控模型两者是缺一不可相辅相成的。
四、行业发展方向
最近大家内卷的比较厉害,还没有到35危机,打工人到了30岁就开始彷徨。之前一直说风控从业者对于年龄的天花板还是具备一定反脆弱能力的。从目前行情上说,确实是的。
1、初级建模工程师:工作经验2年之内
主要是处于学习阶段,主要是模仿学习,或者说按照历史模型搭建进行工作。常见建模的日常是通过数据提取特征后,再进行模型搭建,通常是工作经验2年之内的新人。
2、高级建模工程师:工作经验2-3年之间
一般能够完成建模工作关键,如果A卡、B卡、C卡的搭建,能够通过业务需求给予解决方案。
3、风控专家:4-8年
这个时候通常会出现职业生涯的一次选择,是继续做业务还是调整方向做管理。但是无论走哪个方向,都是形成自有的知识体系和工作框架。能够独立完成模型搭建工作,并且能够覆盖整个团队。
4、风控总监:8年以上
这个时候主要就是具备其战略思想,能够把控整体的风控方向,从0到1对于风控模型工作进行把控。