风控场景下的数据源主要可以分为两类。 一类是银行和互联网金融机构通过自身业务线产生的金融数据, 包括征信报告、 交易流水、理财产品等, 这些强金融属性数据由于直接与客户的金融行为挂钩, 因而能够比较好地刻画客户的风险状况。另一类是非金融机构产生的数据, 例如运营商、 地理位置、设备属性等,这些弱金融属性数据虽然不能直接反映客户的风险, 但是通过特征和模型方式上的加工, 能 够对强金融属性数据起到较好的补充和增益作用, 因此也被纳入风控大数据体系内。
1、征信报告
介绍风控大数据, 首先就要从央行征信报告说起。征信报告来自中国人民银行征信中心, 是由国家设立的金融信用信息基础数据库,由国内各类放贷机构定期上报后经征信中心统一汇总而成。
2、消费能力
消费数据主要来自银行卡的交易流水和部分互联网巨头所掌握的特定场景下的消费流水, 例如电商、出行等。 消费数据主要包括客户的消费金额、消费频率、消费偏好、消费时段、消费排名、消费稳定性等,能够衡量客户的消费能力, 从而计算客户的风险状况和收入情况。 对于掌握了一些特定场景的互联网巨头, 消费数据可以帮助筛选出一批体系内的活跃用户, 用来开白或者增信,保证业务开展前期风险在可控范围内。
3、资产状况
资产状况可以分为固定资产和流动资产。
4、基本信息
基本信息也是风控场景中应用较为广泛的一类数据源, 不仅可以用在准入阶段制定年龄和地区的白名单,也可以作为风控模型的人模特征。
5、黑名单
市面上的黑名单数据来源较为广泛,定义也各不相间,这里分情况来介绍。首先是公安部门的黑名单和最高法院的失信被执行人,这类数据命中率不会太高,但是被命中人群都是有过案底或重大违约记