智能风控模型之数据源类型

本文探讨了智能风控模型中的两类数据源——金融数据和非金融数据。金融数据如征信报告、消费能力和资产状况直接反映风险,而非金融数据如运营商、地理位置和设备属性则通过特征加工辅助风险评估。通过对各种数据源的分析,可以更全面地理解并控制信贷风险。
摘要由CSDN通过智能技术生成

风控场景下的数据源主要可以分为两类。 一类是银行和互联网金融机构通过自身业务线产生的金融数据, 包括征信报告、 交易流水、理财产品等, 这些强金融属性数据由于直接与客户的金融行为挂钩, 因而能够比较好地刻画客户的风险状况。另一类是非金融机构产生的数据, 例如运营商、 地理位置、设备属性等,这些弱金融属性数据虽然不能直接反映客户的风险, 但是通过特征和模型方式上的加工, 能 够对强金融属性数据起到较好的补充和增益作用, 因此也被纳入风控大数据体系内。

1、征信报告

介绍风控大数据, 首先就要从央行征信报告说起。征信报告来自中国人民银行征信中心, 是由国家设立的金融信用信息基础数据库,由国内各类放贷机构定期上报后经征信中心统一汇总而成。

2、消费能力

消费数据主要来自银行卡的交易流水和部分互联网巨头所掌握的特定场景下的消费流水, 例如电商、出行等。 消费数据主要包括客户的消费金额、消费频率、消费偏好、消费时段、消费排名、消费稳定性等,能够衡量客户的消费能力, 从而计算客户的风险状况和收入情况。 对于掌握了一些特定场景的互联网巨头, 消费数据可以帮助筛选出一批体系内的活跃用户, 用来开白或者增信,保证业务开展前期风险在可控范围内。

3、资产状况

资产状况可以分为固定资产和流动资产。

4、基本信息

基本信息也是风控场景中应用较为广泛的一类数据源, 不仅可以用在准入阶段制定年龄和地区的白名单,也可以作为风控模型的人模特征。

5、黑名单

市面上的黑名单数据来源较为广泛,定义也各不相间,这里分情况来介绍。首先是公安部门的黑名单和最高法院的失信被执行人,这类数据命中率不会太高,但是被命中人群都是有过案底或重大违约记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vivian@消费金融金融风控联盟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值