骑士周游算法及其通过贪心算法进行的优化
骑士周游算法就是一个回溯问题类似的还有找迷宫,和八皇后问题
这是一个8*8的棋盘,马每次只能走这几个地方,下面来说一下我们的思路
1.首先应该创造一个方法,判断在当前马的点可以跳到什么地方去,最多有8个点,把他们添加到一个list集合中。
2.创建一个数组保存这个点是否被访问,添加一个标志位,当标志位位true时说明,我们的遍历完了添加一个step记录我们走的步数
3.开始我们的遍历
1)首先把这个位设置为已经访问
2)获得这个点接下来可以走的点的list集合
3)循环判断list集合不为空就一直循环
4)从集合取出一个判断这个点是否被访问,如果没有访问进行递归
4.最后如果我们的步数=了8*8就把标志位置为true
5.否则把这个点设置为未访问,递归回上一层
//骑士周游问题
//贪心算法
public class HorseDemo {
private static int X;//棋盘的列
private static int Y;//棋盘的行
//创建一个数组,标记棋盘是否被访问过
private static boolean visited[];
//如果全都被访问过设置为true
private static boolean finished;
public static void main(String[] args) {
//测试骑士周游算法是否正确
X = 8;
Y = 8;
int row = 1;//马儿的初始位置的行
int column = 1;//马儿的初始位置的列
//创建棋盘
int[][] chessboard = new int[X][Y];
visited = new boolean[X * Y];//初始值都是false
long start = System.currentTimeMillis();
traversalChessBoard(chessboard, row - 1, column - 1, 1);
long end = System.currentTimeMillis();
System.out.println("共耗时: " + (end - start) + " 毫秒");
//输出棋盘的最后情况
for (int[] rows : chessboard) {
System.out.println(Arrays.toString(rows));
}
}
/**
* 完成骑士周游问题的算法
*
* @param chessboard 棋盘
* @param row 马儿当前的行数,从0开始
* @param column 马儿当前的列,从0开始
* @param step 是第几步,其实为第一步
*/
public static void traversalChessBoard(int[][] chessboard, int row, int column, int step) {
chessboard[row][column] = step;
//当前是第一个块(rwo*x+column)
visited[row * X + column] = true;//标记该位置已访问
//获取当前位置可以走的下一个位置的集合
ArrayList<Point> ps = next(new Point(column, row));
sort(ps);
//遍历ps
while (!ps.isEmpty()) {
//这个取出一个少一个,由此可以进行回溯
Point p = ps.remove(0);//取出下一个可以走的位置
//判断该点是否已经访问过
if (!visited[p.y * X + p.x]) {
//说明还没有访问过
traversalChessBoard(chessboard, p.y, p.x, step + 1);
}
}
//判断马儿是否完成了任务,使用step和应该走的步数比较
//finished这个是用于回溯的过程中要做判断,帮助回溯退出循环
if (step < X * Y && !finished) {
chessboard[row][column] = 0;
visited[row * X + column] = false;
return;
} else {
finished = true;
}
}
/**
* 功能:根据当前的位置(point对象),计算马儿还能走那些位置,并放入到一个集合中(ArrayList),最多8个位置
*
* @param curPoint
* @return
*/
public static ArrayList<Point> next(Point curPoint) {
//创建一个ArrayList
ArrayList<Point> ps = new ArrayList<Point>();
//创建一个数组标记棋盘的各个位置是否被访问过
//创建一个Point
//每次加的是匿名对象
Point p1 = new Point();
//判断马儿是不是能走5那个位置
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
//判断马儿是不是能走6那个位置
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
//判断马儿是不是能走7那个位置
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
//判断马儿是不是能走0那个位置
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
//判断马儿是不是能走1那个位置
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
//判断马儿是不是能走2那个位置
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
//判断马儿是不是能走3那个位置
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
//判断马儿是不是能走4那个位置
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
return ps;
}
//根据当前这一步的所有下一步的选择位置,进行非递减排序
public static void sort(ArrayList<Point> ps) {
ps.sort(new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
//获取到o1的下一步的所有位置的个数
int count1 = next(o1).size();
//获取下o2的下一步的所有位置个数
int count2 = next(o2).size();
if (count1 < count2) {
return -1;
} else if (count1 == count2) {
return 0;
} else {
return 1;
}
}
});
}
}
== count2) {
return 0;
} else {
return 1;
}
}
});
}
}
贪心算法优化,在获取到集合之后对集合进行排序,将元素最少的向前排这样可以极大的减少我们算法的开销