微分熵(Differential Entropy)是信息论中的一个概念,它是用来衡量连续随机变量的“不确定性”或“信息量”的。微分熵与离散熵类似,区别在于微分熵用于描述连续信号或变量的“平均信息量”。它适用于描述连续分布的随机变量,例如正态分布、均匀分布、指数分布等。
1. 微分熵的基本定义
对于一个连续随机变量 X X X,其概率密度函数(PDF)为 p ( x ) p(x) p(x),那么它的微分熵 H ( X ) H(X) H(X) 定义为:
H ( X ) = − ∫ − ∞ + ∞ p ( x ) log p ( x ) d x H(X) = - \int_{-\infty}^{+\infty} p(x) \log p(x) \, dx H(X)=−∫−∞+∞p(x)logp(x)dx
这里:
- p ( x ) p(x) p(x) 是 X X X 的概率密度函数(PDF),表示在某个点 x x x 处的概率密度。
- log \log log 是以自然对数为底(可以使用 log 2 \log_2 log