微分熵(Differential Entropy)与连续分布的随机变量(正态分布、均匀分布、指数分布)

微分熵(Differential Entropy)是信息论中的一个概念,它是用来衡量连续随机变量的“不确定性”或“信息量”的。微分熵与离散熵类似,区别在于微分熵用于描述连续信号或变量的“平均信息量”。它适用于描述连续分布的随机变量,例如正态分布、均匀分布、指数分布等。

1. 微分熵的基本定义

对于一个连续随机变量 X X X,其概率密度函数(PDF)为 p ( x ) p(x) p(x),那么它的微分熵 H ( X ) H(X) H(X) 定义为:

H ( X ) = − ∫ − ∞ + ∞ p ( x ) log ⁡ p ( x )   d x H(X) = - \int_{-\infty}^{+\infty} p(x) \log p(x) \, dx H(X)=+p(x)logp(x)dx

这里:

  • p ( x ) p(x) p(x) X X X 的概率密度函数(PDF),表示在某个点 x x x 处的概率密度。
  • log ⁡ \log log 是以自然对数为底(可以使用 log ⁡ 2 \log_2 log
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值