2.2 (函数)极限的概念、关于左右极限的典型错误

1. 数列极限与函数极限

数列极限是函数极限的一种特殊情况。 数列可以看作是定义域为正整数集(或其子集)的函数。因此,数列极限 lim (n→∞) a_n 可以视为函数极限 lim (x→∞) f(x)x 取正整数时的特例。 这里的函数被称为"整标函数", n=0,1,2,3…

2. 函数极限的充要条件(定理 1)

定理 1: 函数 f(x)x 趋近于 x₀ 时极限存在的充要条件是:左极限和右极限都存在,且相等。

lim (x→x₀) f(x) = A  <=>  lim (x→x₀⁻) f(x) = lim (x→x₀⁺) f(x) = A

其中:

  • lim (x→x₀) f(x) 表示函数 f(x)x 趋近于 x₀ 时的极限。
  • lim (x→x₀⁻) f(x) 表示函数 f(x)x 从左侧趋近于 x₀ 时的左极限。
  • lim (x→x₀⁺) f(x) 表示函数 f(x)x 从右侧趋近于 x₀ 时的右极限。
  • A 是一个确定的常数。

3. x→∞ 与 n→∞ 的区别

x→∞ (包括 x→+∞x→-∞) 表示 x 是一个连续变量,可以趋近于正无穷或负无穷。而 n→∞ 通常表示 n 是一个离散变量(通常是正整数),只能趋近于正无穷。
在这里插入图片描述

  • lim (x→∞) 1/x = 0 (x 可以是 ±∞ 任何实数)

  • lim (n→∞) 1/n = 0 (n 只能是正整数)

4. 关于函数极限的经典错误

在这里插入图片描述

这里的 Δ 应该理解为一个趋近于 0 但不等于 0 的变量。如果 Δ 本身就等于 0,则表达式无意义(分母不能为零)
*
*

5. 左右极限(定理 2)

定理 2: 函数极限存在且等于 A 的充要条件是左极限和右极限都存在且都等于 A

6. 需要分左右极限讨论的情况

三种常见情形:

  1. 分段函数在分界点处: 如果函数在分界点两侧的表达式不同,需要分别计算左极限和右极限。

  2. e^∞ 型极限: 例如 lim (x→0) e^(1/x)。需要区分 x 从左侧趋近于 0 (1/x → -∞, e^(1/x) → 0) 和从右侧趋近于 0 (1/x → +∞, e^(1/x) → +∞)。

  3. arctan(∞) 型极限: 例如 lim (x→0) arctan(1/x)。需要区分 x 从左侧趋近于 0 (1/x → -∞, arctan(1/x) → -π/2) 和从右侧趋近于 0 (1/x → +∞, arctan(1/x) → π/2)。
    在这里插入图片描述

7. 例题

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值