1. 数列极限与函数极限
数列极限是函数极限的一种特殊情况。 数列可以看作是定义域为正整数集(或其子集)的函数。因此,数列极限 lim (n→∞) a_n
可以视为函数极限 lim (x→∞) f(x)
在 x
取正整数时的特例。 这里的函数被称为"整标函数", n=0,1,2,3…
2. 函数极限的充要条件(定理 1)
定理 1: 函数 f(x)
当 x
趋近于 x₀
时极限存在的充要条件是:左极限和右极限都存在,且相等。
lim (x→x₀) f(x) = A <=> lim (x→x₀⁻) f(x) = lim (x→x₀⁺) f(x) = A
其中:
lim (x→x₀) f(x)
表示函数f(x)
在x
趋近于x₀
时的极限。lim (x→x₀⁻) f(x)
表示函数f(x)
在x
从左侧趋近于x₀
时的左极限。lim (x→x₀⁺) f(x)
表示函数f(x)
在x
从右侧趋近于x₀
时的右极限。- A 是一个确定的常数。
3. x→∞ 与 n→∞ 的区别
x→∞
(包括 x→+∞
和 x→-∞
) 表示 x
是一个连续变量,可以趋近于正无穷或负无穷。而 n→∞
通常表示 n
是一个离散变量(通常是正整数),只能趋近于正无穷。
-
lim (x→∞) 1/x = 0
(x 可以是 ±∞ 任何实数) -
lim (n→∞) 1/n = 0
(n 只能是正整数)
4. 关于函数极限的经典错误
这里的 Δ 应该理解为一个趋近于 0 但不等于 0 的变量。如果 Δ 本身就等于 0,则表达式无意义(分母不能为零)
*
*
5. 左右极限(定理 2)
定理 2: 函数极限存在且等于 A
的充要条件是左极限和右极限都存在且都等于 A
。
6. 需要分左右极限讨论的情况
三种常见情形:
-
分段函数在分界点处: 如果函数在分界点两侧的表达式不同,需要分别计算左极限和右极限。
-
e^∞ 型极限: 例如
lim (x→0) e^(1/x)
。需要区分x
从左侧趋近于 0 (1/x → -∞, e^(1/x) → 0) 和从右侧趋近于 0 (1/x → +∞, e^(1/x) → +∞)。 -
arctan(∞) 型极限: 例如
lim (x→0) arctan(1/x)
。需要区分x
从左侧趋近于 0 (1/x → -∞, arctan(1/x) → -π/2) 和从右侧趋近于 0 (1/x → +∞, arctan(1/x) → π/2)。