阶跃函数、冲激函数、广义函数、奇异信号及其应用(取样)

贯穿信号系统课程的三个关键问题

  1. 基本信号及其基本响应:理解并掌握如何分析系统对基本信号的响应(通过黑箱)。
  2. 任意信号的分解: 如何将复杂的信号分解成基本信号的组合.
  3. LTI 系统分析:利用线性时不变系统的特性来分析系统行为。

1. 单位阶跃函数 ε(t)

  • 定义:

    ε(t) = 0,  t < 0
    ε(t) = 1,  t > 0
    

    在 t=0 处,函数值发生跳变。

  • 理解: 可以将阶跃函数看成一个理想的开关,t<0时,开关断开,t>0时,开关闭合。

  • 作为极限: 阶跃函数可以看作某些函数序列的极限。例如,下图所示的函数序列 γ_n(t),当 n→∞ 时,就趋近于 ε(t)。

     1/n   (图像)
    -------
    |      |
    |      |  高度为1/n
    |      |
    -------
    -1/n  0  1/n   t
    

2. 单位冲激函数 δ(t)

  • 定义: 冲激函数是一个“奇异函数”,它不是普通意义上的函数,而是通过它对其他函数(检验函数)的作用来定义的。 它具有以下性质:

    • 高度无穷大
    • 宽度无穷小
    • 面积为 1
    • 偶函数
  • 理解: 可以将冲激函数看作一个持续时间极短、幅度极大、面积为 1 的脉冲。它常用来表示理想化的瞬时冲击或突变。

  • 作为极限 冲激函数同样可以看作是某些函数序列的极限. 例如对上述γ_n(t)求导得到的函数序列,当n→∞,就逼近δ(t)

3. 阶跃函数与冲激函数的关系

  • 微分关系: δ(t) = dε(t) / dt (阶跃函数的导数是冲激函数)
  • 积分关系: ε(t) = ∫(-∞, t) δ(τ) dτ (冲激函数的积分是阶跃函数)

4. 冲激函数的作用

冲激函数的主要作用是描述间断点的导数。对于一个有间断点的函数,其导数在间断点处会表现为冲激函数。

例题:

已知函数 f(t) = 2ε(t+1) - 2ε(t-1),求其导数 f'(t)

解:

f'(t) = 2δ(t+1) - 2δ(t-1)

5. 奇异信号

奇异信号是指函数本身有不连续点(跳变点),或者其导数、积分有不连续点的函数。阶跃函数和冲激函数都是典型的奇异信号。

6. 广义函数

冲激函数是一种广义函数。广义函数不是直接定义为点到点的映射,而是通过它对测试函数的作用来定义的。对于一个测试函数φ(t)
定义:
N_g[φ(t)] = ∫(-∞, +∞) g(t)φ(t) dt.

7. 冲激函数的取样性质(筛选性质)

  • 核心公式:

    • f(t)δ(t) = f(0)δ(t)
    • ∫(-∞, ∞) f(t)δ(t) dt = f(0)
    • f(t)δ(t-a) = f(a)δ(t-a)
    • ∫(-∞, ∞) f(t)δ(t-a) dt = f(a)
  • 含义: 冲激函数与普通函数相乘,相当于对普通函数在冲激发生时刻进行取样。积分的结果就是普通函数在冲激发生时刻的值。

  • 注意: 积分区间必须包含冲激发生的时刻。

例题:

  • ∫(-4, 9) sin(t - π/4)δ(t) dt = sin(0 - π/4) = -√2 / 2
  • ∫(-∞, ∞) e^(-2t)δ(t) dt = e^(-2*0) = 1

8. 冲激函数的导数 δ’(t) (冲激偶)

  • 定义 (通过对测试函数的作用):
    ∫(-∞, +∞) f(t)δ’(t)dt = -f’(0)
  • 性质:
    • f(t)δ'(t) = f(0)δ'(t) - f'(0)δ(t)
  • 广义: ∫(-∞, +∞) f(t)δ’(t-a)dt = -f’(a)
  • n阶导数: ∫(-∞, +∞) f(t)δ^(n)(t)dt = (-1)^n * f^(n)(0)

9. 冲激函数的尺度变换

  • 公式:

    • δ(at) = (1/|a|)δ(t)
    • δ'(at) = (1/|a|) * (1/a) * δ'(t)
    • δ(at - t₀) = δ[a(t - t₀/a)] = (1/|a|)δ(t - t₀/a)
  • 特例:

    • δ(-t) = δ(t) (偶函数)
    • δ'(-t) = -δ'(t) (奇函数)

10. 离散时间信号

  • 单位脉冲序列 δ(k):
δ(k) = 1, k = 0
δ(k) = 0, k ≠ 0
  • 单位阶跃序列 ε(k):
ε(k) = 1, k ≥ 0
ε(k) = 0, k < 0
  • 关系:
    • δ(k) = ε(k) - ε(k-1)
    • ε(k) = Σ(i=-∞, k) δ(i)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值