贯穿信号系统课程的三个关键问题
- 基本信号及其基本响应:理解并掌握如何分析系统对基本信号的响应(通过黑箱)。
- 任意信号的分解: 如何将复杂的信号分解成基本信号的组合.
- LTI 系统分析:利用线性时不变系统的特性来分析系统行为。
1. 单位阶跃函数 ε(t)
-
定义:
ε(t) = 0, t < 0 ε(t) = 1, t > 0
在 t=0 处,函数值发生跳变。
-
理解: 可以将阶跃函数看成一个理想的开关,t<0时,开关断开,t>0时,开关闭合。
-
作为极限: 阶跃函数可以看作某些函数序列的极限。例如,下图所示的函数序列 γ_n(t),当 n→∞ 时,就趋近于 ε(t)。
1/n (图像) ------- | | | | 高度为1/n | | ------- -1/n 0 1/n t
2. 单位冲激函数 δ(t)
-
定义: 冲激函数是一个“奇异函数”,它不是普通意义上的函数,而是通过它对其他函数(检验函数)的作用来定义的。 它具有以下性质:
- 高度无穷大
- 宽度无穷小
- 面积为 1
- 偶函数
-
理解: 可以将冲激函数看作一个持续时间极短、幅度极大、面积为 1 的脉冲。它常用来表示理想化的瞬时冲击或突变。
-
作为极限 冲激函数同样可以看作是某些函数序列的极限. 例如对上述γ_n(t)求导得到的函数序列,当n→∞,就逼近δ(t)
3. 阶跃函数与冲激函数的关系
- 微分关系:
δ(t) = dε(t) / dt
(阶跃函数的导数是冲激函数) - 积分关系:
ε(t) = ∫(-∞, t) δ(τ) dτ
(冲激函数的积分是阶跃函数)
4. 冲激函数的作用
冲激函数的主要作用是描述间断点的导数。对于一个有间断点的函数,其导数在间断点处会表现为冲激函数。
例题:
已知函数 f(t) = 2ε(t+1) - 2ε(t-1)
,求其导数 f'(t)
。
解:
f'(t) = 2δ(t+1) - 2δ(t-1)
5. 奇异信号
奇异信号是指函数本身有不连续点(跳变点),或者其导数、积分有不连续点的函数。阶跃函数和冲激函数都是典型的奇异信号。
6. 广义函数
冲激函数是一种广义函数。广义函数不是直接定义为点到点的映射,而是通过它对测试函数的作用来定义的。对于一个测试函数φ(t)
定义:
N_g[φ(t)] = ∫(-∞, +∞) g(t)φ(t) dt
.
7. 冲激函数的取样性质(筛选性质)
-
核心公式:
f(t)δ(t) = f(0)δ(t)
∫(-∞, ∞) f(t)δ(t) dt = f(0)
f(t)δ(t-a) = f(a)δ(t-a)
∫(-∞, ∞) f(t)δ(t-a) dt = f(a)
-
含义: 冲激函数与普通函数相乘,相当于对普通函数在冲激发生时刻进行取样。积分的结果就是普通函数在冲激发生时刻的值。
-
注意: 积分区间必须包含冲激发生的时刻。
例题:
∫(-4, 9) sin(t - π/4)δ(t) dt = sin(0 - π/4) = -√2 / 2
∫(-∞, ∞) e^(-2t)δ(t) dt = e^(-2*0) = 1
8. 冲激函数的导数 δ’(t) (冲激偶)
- 定义 (通过对测试函数的作用):
∫(-∞, +∞) f(t)δ’(t)dt = -f’(0) - 性质:
f(t)δ'(t) = f(0)δ'(t) - f'(0)δ(t)
- 广义: ∫(-∞, +∞) f(t)δ’(t-a)dt = -f’(a)
- n阶导数: ∫(-∞, +∞) f(t)δ^(n)(t)dt = (-1)^n * f^(n)(0)
9. 冲激函数的尺度变换
-
公式:
δ(at) = (1/|a|)δ(t)
δ'(at) = (1/|a|) * (1/a) * δ'(t)
δ(at - t₀) = δ[a(t - t₀/a)] = (1/|a|)δ(t - t₀/a)
-
特例:
δ(-t) = δ(t)
(偶函数)δ'(-t) = -δ'(t)
(奇函数)
10. 离散时间信号
- 单位脉冲序列 δ(k):
δ(k) = 1, k = 0
δ(k) = 0, k ≠ 0
- 单位阶跃序列 ε(k):
ε(k) = 1, k ≥ 0
ε(k) = 0, k < 0
- 关系:
δ(k) = ε(k) - ε(k-1)
ε(k) = Σ(i=-∞, k) δ(i)