🐇明明跟你说过:个人主页
🏅个人专栏:《未来已来:云原生之旅》🏅
🔖行路有良友,便是天堂🔖
目录
一、引言
1、云原生的兴起
- 云计算的普及:自2006年亚马逊推出AWS云计算服务平台以来,云计算技术逐渐成熟并商业化。Google、Microsoft、IBM等大型科技公司纷纷加入云计算市场,推动了云计算的普及和应用。
- 传统技术的局限:在云原生概念出现之前,企业主要围绕基础设施即服务(IaaS)等云服务进行拓展,但传统虚拟化技术存在启动与部署时间长、资源利用率低等问题,难以满足日益增长的业务需求。
2、边缘计算的兴起
- 实时性需求的增加:随着智能手机、可穿戴设备等智能化计算设备的普及,以及高清视频、人工智能算法等需求的涌现,各类游戏、应用、视频业务对于数据和实时性的要求越来越高。传统的云计算模式由于数据传输延迟的问题,难以满足这些实时性需求。
- 数据传输成本的降低:随着5G/6G、Wi-Fi 6等通信技术和标准的快速发展,用户端到网络接入端的直接延迟可以降到个位数毫秒级。这使得计算资源从云中心下降到靠近用户的网络边缘设备成为可能。
二、边缘计算基础
1、边缘计算的定义与特点
边缘计算(Edge Computing)是一种分布式计算范式,它将数据处理和存储从中央数据中心或云端移至靠近数据生成源(如物联网设备、传感器、智能设备等)的位置。通过在网络的“边缘”进行数据处理,边缘计算旨在提高应用的响应速度、降低带宽消耗和提高数据隐私性。
边缘计算的定义
边缘计算是一种计算模式,其中数据处理、分析和存储发生在靠近数据源的地方,而不是依赖于集中式的数据中心或云计算设施。它是一种将计算资源分布在网络边缘的策略,以便更快、更可靠地处理本地数据。
边缘计算的特点
1. 低延迟:
- 由于数据处理靠近数据源,边缘计算显著减少了数据传输的延迟,提高了应用的响应速度,特别适用于实时性要求高的应用,如自动驾驶、智能制造等。
2. 带宽优化:
- 通过在边缘设备上进行数据预处理和过滤,边缘计算减少了发送到中央数据中心的数据量,从而优化了网络带宽利用率,降低了带宽成本。
3. 高可靠性:
- 边缘计算具有分布式特性,即使中心数据中心发