解锁DeepSeek潜能:Docker+Ollama打造本地大模型部署新范式

🐇明明跟你说过:个人主页

🏅个人专栏:《深度探秘:AI界的007》 🏅

🔖行路有良友,便是天堂🔖

目录

一、引言

1、什么是Docker

2、什么是Ollama

二、准备工作

1、操作系统

2、镜像准备

三、安装

1、安装Docker

2、启动Ollama

3、拉取Deepseek大模型

4、启动Deepseek 


一、引言

1、什么是Docker

Docker:就像一个“打包好的App”

想象一下,你写了一个很棒的程序,在自己的电脑上运行得很好。但当你把它发给别人,可能会遇到各种问题:

  • “这个软件需要 Python 3.8,但我只有 Python 3.6!”

  • “我没有你用的那个库,安装失败了!”

  • “你的程序要跑在 Linux,我的电脑是 Windows!”

💡 Docker 的作用:它就像一个“打包好的 App”,把你的软件、依赖、环境、系统配置等 全部封装到一个“容器” 里,别人拿到这个容器,就能直接运行,而不用关心它内部的细节。


🚀 把 Docker 想象成“集装箱”

传统运输 vs. 集装箱运输

以前(传统部署)

  • 货物(程序)需要不同的包装方式(运行环境)

  • 货物可能损坏(环境不兼容)

  • 装卸麻烦(程序迁移难)

有了 Docker(容器部署)

  • 货物装进标准化集装箱(Docker 容器)

  • 不管运到哪里,集装箱里东西不变(程序环境一致)

  • 码头和船只可以直接装卸(轻松部署到不同系统)

Docker 让软件像“集装箱”一样标准化、可移植、易部署! 🚢

2、什么是Ollama

Ollama 是一个本地运行大语言模型(LLM)的工具,它可以让你 在自己的电脑上直接运行 AI 模型,而不需要连接云端服务器。

💡 简单来说:Ollama 让你像运行普通软件一样,轻松在本地使用 ChatGPT、Llama、Mistral、Gemma 等大语言模型。

🚀 Ollama 的核心特点

  1. 本地运行 🏠

    • 你不需要联网,也不用担心隐私问题,所有计算都在你的电脑上完成。

  2. 支持多种开源模型 📚

    • 可以运行 Llama 3、Mistral、Gemma、Code Llama 等不同的大模型。

  3. 易于安装和使用 🔧

    • 只需要几条命令,就能下载并运行 AI 模型。

  4. 轻量化优化

    • 适配 Mac(Apple Silicon)、Linux 和 Windows,支持 GPU 加速,让模型运行更快。

  5. 离线推理 🔒

    • 适合不想依赖 OpenAI API 或其他云端 AI 服务的用户。

二、准备工作

1、操作系统

这里我们使用的操作系统为Centos 7.9,配置为4核8G,大家也可以使用其他的Linux发行版本,或者使用Windows。

2、镜像准备

如果已经安装了Docker,可以提前准备好镜像,ollama/ollama,镜像比较大,拉取会耗一些时间

三、安装

1、安装Docker

1.关闭防火墙

systemctl stop firewalld && systemctl disabled firewalld

2.关闭SELinux

setenforce 0

3.更换yum源

rm -f /etc/yum.repos.d/*
curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo
yum clean all && yum makecache

4.安装依赖项

yum install -y yum-utils device-mapper-persistent-data lvm2

5. 添加Docker源

yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

 6.安装Docker

yum install docker-ce -y

7.添加Docker镜像加速器

vim /etc/docker/daemon.json
# 添加如下内容
{
 
"registry-mirrors": [
 
"https://docker.m.daocloud.io",
 
"https://noohub.ru",
 
"https://huecker.io",
 
"https://dockerhub.timeweb.cloud",
 
"https://0c105db5188026850f80c001def654a0.mirror.swr.myhuaweicloud.com",
 
"https://5tqw56kt.mirror.aliyuncs.com",
 
"https://docker.1panel.live",
 
"http://mirrors.ustc.edu.cn/",
 
"http://mirror.azure.cn/",
 
"https://hub.rat.dev/",
 
"https://docker.ckyl.me/",
 
"https://docker.chenby.cn",
 
"https://docker.hpcloud.cloud",
 
"https://docker.m.daocloud.io"
 
]
 
}

8.启动Docker

systemctl start docker

2、启动Ollama

1.启动Ollama容器

docker run -itd -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
  • docker run    运行一个新的 Docker 容器
  • -itd    组合多个选项:
    • -i(保持标准输入)
    • -t(分配终端)
    • -d(后台运行容器)
  • -v ollama:/root/.ollama    挂载数据卷,把 ollama 这个 Docker 数据卷 绑定到容器的 /root/.ollama 目录,确保数据持久化(如下载的模型不会丢失)。
  • -p 11434:11434    端口映射,把 宿主机(本机)的 11434 端口 映射到 容器 内部的 11434 端口,这样宿主机可以通过 http://localhost:11434 访问 Ollama 服务。
  • --name ollama    指定 容器名称 为 ollama,方便管理和启动。
  • ollama/ollama    使用的 Docker 镜像,这里是 官方的 Ollama 镜像。

如果是使用GPU运行,则用下面的命令启动

docker run -itd --name ollama  --gpus=all -v ollama:/root/.ollama -p 11434:11434  ollama/ollama

2.查看Ollama容器

docker ps

  

3、拉取Deepseek大模型

1.进入到容器中 

docker exec -it ollama /bin/bash

2.拉取模型

ollama pull  deepseek-r1:7b

  

在官网中,有许多Deepseek的模型,这里主要是演示,所以拉取了一个较小的模型

官网地址:deepseek-r1

  

3.查看模型

ollama list

  

4、启动Deepseek 

ollama run deepseek-r1:7b

  

 💕💕💕每一次的分享都是一次成长的旅程,感谢您的陪伴和关注。希望这些文章能陪伴您走过技术的一段旅程,共同见证成长和进步!😺😺😺

🧨🧨🧨让我们一起在技术的海洋中探索前行,共同书写美好的未来!!!  

<think>嗯,用户问的是RAG、DockerOllamaDeepSeek和Dify的本地部署方案。从引用内容看,用户可能是个技术实践者,想搭建自己的AI本地环境,而且引用的资料都涉及私有化部署,说明对数据隐私和本地控制有需求。 用户提供的引用信息很有价值。引用[1][2][3]详细说明了Dify、OllamaDeepSeek的集成方式,引用[3]还给出了硬件配置参考,引用[5]提供了Ollama环境变量配置。这些正好能拼凑出完整的部署方案。 用户可能遇到的主要挑战在于:组件多(Docker/Ollama/Dify/RAGFlow/DeepSeek)、配置复杂、资源调配。需要特别注意: 1. 硬件门槛:根据引用[3],运行14B模型至少要12核CPU+32GB内存+16GB显存 2. 网络配置:Docker容器间通信(如OLLAMA_HOST设置) 3. 模型选择:DeepSeek有7B/14B/67B多个版本,本地部署推荐deepseek-r1:14b 部署方案可以分三步走: 第一步先搭基础环境(Docker+Ollama),这里引用[1][5]的环境变量配置很重要; 第二步部署Dify和RAGFlow,引用[2][3]提到它们通过API连接Ollama; 最后集成DeepSeek模型,引用[4]提到其MoE架构能降低资源消耗。 需要提醒用户注意版本兼容性,比如Dify v0.6.5对Ollama的支持最稳定。另外引用[3]的硬件表格很实用,应该重点呈现,避免用户设备资源不足导致失败。 用户没提具体应用场景,但引用[2][3]都强调RAG能力,推测可能需要知识库问答系统。在后续优化建议中可以补充RAG调优方法。</think>以下是基于 DockerOllamaDeepSeek 和 Dify 的本地私有化 RAG 部署方案,结合引用内容整理为清晰步骤: --- ### **部署架构** ```mermaid graph LR A[Docker] --> B[Ollama] A --> C[Dify] B --> D[DeepSeek-R1] C --> E[RAGFlow/Xinference] C --> F[本地知识库] ``` --- ### **一、基础环境准备** 1. **安装 Docker** - 官网下载:https://www.docker.com/ - 验证安装:`docker --version` 2. **安装 Ollama** - 官网下载:https://ollama.com/ - 配置环境变量(Windows)[^5]: ```bash OLLAMA_HOST=0.0.0.0:11434 # 开放网络访问 OLLAMA_MODELS=D:\ollama\models # 自定义模型路径 ``` --- ### **二、部署 DeepSeek 模型** 1. **拉取 DeepSeek 模型**(根据硬件选择版本)[^3]: ```bash ollama run deepseek-r1:8b # 轻量版(8GB显存+ollama run deepseek-r1:14b # 推荐版(16GB显存+) ``` 2. **验证模型运行**: ```bash curl http://localhost:11434/api/generate -d '{ "model": "deepseek-r1:14b", "prompt": "你好" }' ``` > 💡 **硬件建议**(引用[3]): > | 模型版本 | CPU | 内存 | GPU显存 | > |----------|-----------|--------|--------------| > | 7B/8B | 8核+ | 16GB+ | 8GB+ (如RTX 3070) | > | 14B | 12核+ | 32GB+ | 16GB+ (如RTX 4090) | --- ### **三、部署 Dify** 1. **通过 Docker 启动 Dify** [^1][^3]: ```bash docker run -d --name dify \ -p 80:80 \ -e OLLAMA_API_URL=http://host.docker.internal:11434 \ # 连接Ollama -e OLLAMA_MODEL=deepseek-r1:14b \ dify/dify:0.6.5 ``` 2. **访问控制台**:`http://localhost` --- ### **四、集成 RAG 功能** 1. **方案1:使用 Dify 内置 RAG** [^3] - 在 Dify 控制台上传知识文档(PDF/TXT等) - 配置检索策略:关键词/语义搜索 2. **方案2:集成 RAGFlow/Xinference**(高阶)[^2][^5] ```bash # 启动 Xinference(重排序模型) docker run -d -p 9997:9997 xprobe/xinference # Dify 配置中填入 Xinference 地址: Rerank API URL = http://host.docker.internal:9997 ``` --- ### **五、验证全流程** 1. **在 Dify 创建应用**: - 选择「对话型」模板 - 模型选择 `Ollama/deepseek-r1:14b` - 启用知识库并上传测试文档 2. **提问测试**: ```plaintext Q: 根据知识库,XX项目的关键技术是什么? A: [应返回知识库中的相关内容] ``` --- ### **常见问题排查** | 问题现象 | 解决方案 | |-------------------------|------------------------------| | Ollama 连接超时 | 检查 `OLLAMA_HOST` 环境变量与防火墙 | | Dify 无法加载模型 | 确认模型名称拼写(区分大小写) | | RAG 检索结果不相关 | 调整分段策略/启用重排序模型 | > ⚠️ **关键提示**: > - DeepSeek-V3 采用 **混合专家模型(MoE)** 技术,显著降低推理成本[^4] > - 本地 API 调用格式:`http://host.docker.internal:11434/v1/chat/completions`[^5] --- ### 相关问题 1. **如何优化 DeepSeekOllama 上的推理速度?** > 可尝试量化模型:`ollama run deepseek-r1:14b-q4`(需显存≥12GB) 2. **Dify 如何支持多模型切换?** > 在「模型供应商」中添加多个 Ollama 模型端点即可[^3] 3. **本地部署如何保证数据安全?** > 所有组件(Dify/Ollama)均运行在 Docker 隔离环境中,数据不离开本地服务器[^1][^3] 4. **资源不足时如何降级部署?** > 使用 DeepSeek-7B 模型 + 关闭重排序模块,最低需 8GB 内存+8GB 显存[^3]
评论 99
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明明跟你说过

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值