11分制与21分制(乒乓球)

题目背景
国际乒联现在主席沙拉拉自从上任以来就立志于推行一系列改革,以推动乒乓球运动在全球的普及。其中11分制改革引起了很大的争议,有一部分球员因为无法适应新规则只能选择退役。华华就是其中一位,他退役之后走上了乒乓球研究工作,意图弄明白11分制和21分制对选手的不同影响。在开展他的研究之前,他首先需要对他多年比赛的统计数据进行一些分析,所以需要你的帮忙。

题目描述
华华通过以下方式进行分析,首先将比赛每个球的胜负列成一张表,然后分别计算在11分制和21分制下,双方的比赛结果(截至记录末尾)。

比如现在有这么一份记录,(其中W表示华华获得一分,L表示华华对手获得一分):

WWWWWWWWWWWWWWWWWWWWWWLW

在1111分制下,此时比赛的结果是华华第一局11比0获胜,第二局11比0获胜,正在进行第三局,当前比分1比1。而在21分制下,此时比赛结果是华华第一局21比获胜,正在进行第二局,比分2比1。如果一局比赛刚开始,则此时比分为0比0。直到分差大于或者等于2,才一局结束。

你的程序就是要对于一系列比赛信息的输入(WLWL形式),输出正确的结果。

输入格式
每个输入文件包含若干行字符串,字符串有大写的W、L和E组成。其中E表示比赛信息结束,程序应该忽略E之后的所有内容。

输出格式
输出由两部分组成,每部分有若干行,每一行对应一局比赛的比分(按比赛信息输入顺序)。其中第一部分是11分制下的结果,第二部分是21分制下的结果,两部分之间由一个空行分隔。

输入:
WWWWWWWWWWWWWWWWWWWW
WWLWE

输出:
11:0
11:0
1:1

21:0
2:1

个人写法:

#include <bits/stdc++.h>
using namespace std; 

int main()
{
	char n;
	int e, t, ee, tt, ep, tp;
	int we[10086], lt[10086];
	
	e = t = ee = tt = ep = tp = 0;
	while(1)
	{
		scanf(" %c", &n);
		
		if(n == 'E')
		break;
		
		if(n == 'W')//分别计数
		{
			e++;
			ee++;
		}
		
		if(n == 'L')//分别计数
		{
			t++;
			tt++;
		}
		
		we[ep] = e;//用we[偶数]来储存11分制的华华得分
		we[ep+1] = t;//用we[奇数]来储存11分制的华华对手得分, 下同
		
		if((e >= 11 || t >= 11) && abs(e-t) >= 2)//abs(e-t)计算他们的分差 再判断其是否大于等于2.
		{
			e = t = 0;
			ep+=2;
		}
		
		lt[tp] = ee;
		lt[tp+1] = tt;
		
		if((ee >= 21 || tt >= 21) && abs(ee-tt) >= 2)
		{
			ee = tt = 0;
			tp+=2;
		}
	}
	
	for(int i = 0; i <= ep; i+=2)
	{
		printf("%d:%d\n", we[i], we[i+1]);
	}
	
	printf("\n");
	
	for(int i = 0; i <= tp; i+=2)
	{
		printf("%d:%d\n", lt[i], lt[i+1]);
	}
	
	return 0; 
}
  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值