给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。
如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。
假设环境不允许存储 64 位整数(有符号或无符号)。
示例 1:
输入:x = 123
输出:321
示例 2:
输入:x = -123
输出:-321
对于这题,注意的是我们的32位是十进制的表示,对于二进制来说,三十二位是二进制的,所以需要判断是否溢出了、
对于这种大整数,我最先想到的就是先转换成字符串,再转成数字。
对于数字转字符串,我们只需要to_string(int x)就行,不过因为这题要倒过来,所以转换成字符串string后,我们再从后往前取,加入另一个字符串,这样就是倒过来的,在第0位时,如果遇到负号,我们要特殊判断。
对于字符串准换成数字,我们知道用atoi,但是这是对于char[]形式的,它读到‘\0’返回,string是没有结束符的,所以我们需要把string转换成字符数组形式string.c_str().
但是这些只能通过大部分样例,对于溢出的无法判断,因为我们需要atoll,转换成longlong性数字,才能保存超过int范围的数,int范围可以用INT_MAX,INT_MIN表示。
代码如下:
class Solution {
public:
int reverse(int x) {
string s=to_string(x);
int l=s.size();
string t;
int flag=0;
for(int i=l-1;i>=0;i--)
{
if(i==0)
{
if(s[i]=='-')
{
flag=1;
continue;
}
else
{
t+=s[i];
}
}
else
{
t+=s[i];
}
}
if(flag==0)
{
long long ans=atoll(t.c_str());
if(ans>INT_MAX)
{
return 0;
}
else
{
return ans;
}
}
else{
long long ans=atoll(t.c_str());
if(ans>INT_MAX)
{
return 0;
}
else
{
return -ans;
}
}
}
};
另外还有一种方法是取余取模的运算,我们要人为判断溢出,这挺复杂的。就不介绍了。但是取余取模的思想在很多题目中会有运用。