无约束优化方法----Powell法

Powell法的python实现

前面我们介绍了一维搜索的两种优化方法:黄金分割法以及二次插值法。本节我们介绍无约束优化问题常用的Powell法(本质上是共轭方向法)。

1. Powell法

Powell法将整个计算过程分为若干个阶段,每一个阶段由n+1次一维搜索组成。根据共轭方向的概念以及性质,Powell法的核心思想是:首先沿着坐标轴的方向依次进行一维搜索,然后将初次迭代的起始点与末次迭代得到的一个极值点连接构成一个新方向,并沿新方向进行一次一维搜索,此时完成一轮迭代,然后重复上述迭代过程直至满足终止条件。

1.1 Powell法的迭代步骤

Powell法迭代步骤

1.2 例题

在这里插入图片描述
初始点 x ( 0 ) = [ 2 , 1 ] T x^{(0)}=[2,1]^T x(0)=[2,1]T

1.3 代码

# import package
import sympy as sp
from sympy import *
import numpy as np
import matplotlib.pyplot as plt
import math
# Powell方法
def Powell(f,x1,x2,epsilon,k,S,x_initial,x_point):

    # 沿坐标轴1的方向进行一维搜索
    alpha = symbols('alpha')
    f1 = f.subs({x1:(x_initial+alpha*S[0])[0],x2:(x_initial+alpha*S[0])[1]}).evalf()
    
    # 次数不高,可直接采用求导的方法求极值点
    alpha1 = solve(diff(f1,alpha),alpha)[0]
    x_new1 = x_initial + alpha1*S[0]

    # 沿坐标轴2的方向进行一维搜索
    f2 = f.subs({x1:(x_new1+alpha*S[1])[0],x2:(x_new1+alpha*S[1])[1]}).evalf()
    alpha2 = solve(diff(f2,alpha),alpha)[0]
    x_new2 = x_new1 + alpha2*S[1]

    # 构造共轭方向
    S1 = np.array(x_new2-x_initial)
    # 沿共轭方向进行一维搜索
    f3 = f.subs({x1:(x_new2+alpha*S1)[0],x2:(x_new2+alpha*S1)[1]}).evalf()
    alpha3 = solve(diff(f3,alpha),alpha)[0]
    x_new3 = x_new2 + alpha3*S1
    x_point.append([x_initial,x_new1,x_new2,x_new3])
    
    
    # 精度判断--满足精度要求即可退出函数 
    if math.sqrt(sum([i**2 for i in (x_new3-x_initial)])) <= epsilon:
        f_min = f.subs({x1:x_new3[0],x2:x_new3[1]})
        # 为了绘图方便将其转为ndarray
        x_point = np.array(x_point)
        print('最优解为:',x_new3)
        print('最优值为:',f_min)
        print('迭代次数为:',k)
        #print('迭代轨迹为:',x_point)
        return None
      
    # 递归调用函数
    k += 1 # 迭代次数加1
    x_initial = x_new3
    S = np.array([S[-1],S1])
    Powell(f,x1,x2,epsilon,k,S,x_initial,x_point)
# 构造函数表达式
x1 = sp.Symbol('x1')
x2 = sp.Symbol('x2')
f = (x1+x2)**2+(x1-1)**2
display(f)

# 初始化参数
k = 0
S = np.array([[1,0],[0,1]])
epsilon = 0.001
x_initial = np.array([2,1])
x_point = list()
Powell(f,x1,x2,epsilon,k,S,x_initial,x_point = x_point)

在这里插入图片描述

# 可视化
def plt_contour(f,x1,x2):
    f = sp.lambdify([x1,x2],f,'numpy')
    x1 = np.linspace(-2,2,100)
    x2 = np.linspace(-2,2,100)
    X1,X2 = np.meshgrid(x1,x2)
    Z = f(X1,X2)
    fig = plt.contour(X1,X2,Z,20)
    return fig
fig = plt_contour(f,x1,x2)
# 第一次
plt.plot([x_point[0][i][0] for i in range(len(x_point[0]))],
         [x_point[0][i][1] for i in range(len(x_point[0]))],
         marker = 'o',color = 'r')
# 第二次
plt.plot([x_point[1][i][0] for i in range(len(x_point[1]))],
            [x_point[1][i][1] for i in range(len(x_point[1]))],
            marker = 'o',color = 'b')

在这里插入图片描述

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 鲍威尔Powell's method),也被称为鲍威尔变尺度Powell's variable metric method),是一种求解无约束优化问题的数值优化算法。该算法的特点是不需要计算目标函数的梯度或者Hessian矩阵,而是通过选择一系列搜索方向来更新当前解,并在每一步迭代中更新搜索空间。 鲍威尔的基本思想是利用一组线性无关的搜索方向来逼近最优解的位置。首先,选择一个初始点和一组线性无关的初始搜索方向。然后,在每一次迭代中,通过线性组合已有的搜索方向构建新的搜索方向,并沿着该方向进行搜索。最后,根据搜索得到的新解和旧解之间的差异,调整搜索方向和步长,以更新搜索空间。 具体而言,鲍威尔的步骤如下: 1. 初始化:选择初始点和一组线性无关的初始搜索方向。 2. 搜索:沿着当前搜索方向,使用一维搜索方法(如黄金分割)来确定新的解。更新搜索方向和步长。 3. 更新:计算旧解和新解之间的差异,通过线性组合已有的搜索方向构建新的搜索方向。 4. 终止判断:根据一定的终止条件(如目标函数的变化量小于阈值)判断是否达到停止条件。 5. 重复:如果尚未达到停止条件,则返回步骤2,继续迭代搜索。 鲍威尔具有较好的全局搜索性能和收敛性能。它不仅适用于求解无约束优化问题,还可以通过对目标函数加入约束条件的方式来求解约束优化问题。 总之,鲍威尔是一种高效的数值优化算法,通过选择一组线性无关的搜索方向来逼近最优解的位置。相较于需要计算梯度或者Hessian矩阵的方法,鲍威尔具有更好的数值稳定性和鲁棒性。 ### 回答2: 鲍威尔Powell)是一种常用的无约束优化算法,用于求解最优化问题。其基本思想是通过不断迭代优化步长和搜索方向,逐步逼近最优解。 鲍威尔的迭代过程如下: 1. 初始化参数:给定初始点$x_0$,初始搜索方向$d_0$,初始步长$\alpha_0$,设置迭代终止条件,如$||\nabla f(x_k)||<\epsilon$。 2. 计算函数在当前点以当前搜索方向的梯度 $\nabla f(x_k)^T d_k$。 3. 在当前点沿着当前搜索方向进行一维搜索,得到最优步长$\alpha_k$。 4. 更新当前点:$x_{k+1}=x_k+\alpha_k d_k$。 5. 计算新的搜索方向:$d_{k+1}=d_k+e_k$,其中$e_k=x_{k+1}-x_k$。 6. 如果满足终止条件,则停止迭代;否则返回步骤2。 鲍威尔的优点是简单易实现,不需要求解Hessian矩阵。然而,由于每次迭代都需要进行一维搜索,计算量较大,收敛速度较慢。 在实际应用中,鲍威尔常用于求解不可导的目标函数,或者在某些特定情况下,如目标函数具有周期性结构时。此外,鲍威尔也常用于求解非线性最小二乘问题。 总的来说,鲍威尔是一种简单而有效的无约束优化算法,通过迭代优化步长和搜索方向,逐步逼近最优解。然而,由于需要进行一维搜索,收敛速度较慢,适用于某些特定的问题和场景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今天不熬夜⁠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值