无约束优化方法----改进的Powell法

文章介绍了改进的Powell法,即修正的共轭方向法,与原始Powell法的区别在于其迭代过程。提供了一个使用Python实现的示例,包括一维搜索、终止条件以及反射点和共轭方向的计算。此外,还展示了如何用numpy和sympy库进行数值优化,并给出了可视化移动轨迹的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

改进Powell法的Python实现

上一次介绍了Powell法的迭代步骤、对应例题的Python实现。本节介绍改进Powell法(修正的共轭方向法)。

1. 改进的Powell法

改进Powell法与Powell法最大的区别主要在于:
在这里插入图片描述

1.1 Powell法的计算流程

在这里插入图片描述

1.2 例题

在这里插入图片描述

1.2.1 Python实现:
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from sympy import *

def Powell_modified(x_0,fun,x,f_np,n,epsilon1,epsilon2,S,x_point,k=0): 
    
    # 从初始点开始进行n次一维搜索
    x_new = np.zeros((n,len(x_0)))
    lambd = symbols('lambd')
    delta_m = np.zeros(n)
    x_initial = x_0.copy()
    for i in range(n):
        
        x_n = x_initial + lambd*S[i]
        f_lambd = fun.subs({
   x[j]:x_n[j] for j in range(len(x_n))})
        lambd_value = solve(diff(f_lambd,lambd),lambd)
        x_new[i] = x_initial + lambd_value[0]*S[i]
        delta_m[i] = abs(f_np(*[x_initial[j] for j in range(len(x_initial))])-f_np(*[x_new[i][j] for j in range(len(x_new
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今天不熬夜⁠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值