再见 for 循环!pandas 提速 315 倍~
for是所有编程语言的基础语法,初学者为了快速实现功能,依懒性较强。但如果从运算时间性能上考虑可能不是特别好的选择。
本次介绍几个常见的提速方法,一个比一个快,了解pandas本质,才能知道如何提速。
下面是一个例子
基于上面的数据,我们现在要增加一个新的特征,但这个新的特征是基于一些时间条件生成的,根据时长(小时)而变化,如下:
因此,如果你不知道如何提速,那正常第一想法可能就是用apply方法写一个函数,函数里面写好时间条件的逻辑代码。
然后使用for循环来遍历df,根据apply函数逻辑添加新.
原创
2021-02-21 16:42:01 ·
575 阅读 ·
0 评论