一.定义
循环队列是一种队列数据结构,由固定大小的数组组成,其中包括两指针,"front" 和 "rear",以管理队列元素。其特点在于队列具有循环性质,即在"rear"指针达到数组末尾时,下一个元素将从数组开头插入。它支持高效的入队和出队操作,能判断队列的空和满状态,通常应用于需要周期性循环存储数据的场景。
二.特点
-
固定大小的数组:循环队列使用固定大小的数组来存储元素。这个数组的大小在创建队列时就确定,通常不会动态扩展或缩小。
-
循环性质:循环队列的一个关键特点是它的队列是循环的。当"rear"指针到达数组的末尾时,下一个元素将从数组的开头插入。这意味着队列可以循环利用数组的空间,避免了数组满了之后无法插入新元素的问题。
-
双指针:循环队列使用两个指针,分别是"front"(前指针)和"rear"(后指针)。"front"指针指向队列的第一个元素,"rear"指针指向队列的最后一个元素。这些指针的位置关系可以用来判断队列的状态(空或满)以及执行入队和出队操作。
-
高效的入队和出队操作:由于循环队列的特性,入队和出队操作通常非常高效。入队操作只需在"rear"指针指向的位置插入元素并移动"rear"指针,出队操作只需移除"front"指针指向的元素并移动"front"指针。这些操作的时间复杂度通常是O(1)。
-
判空和判满:循环队列有两种状态,即空队列和满队列。你可以使用指针的位置关系来判断队列是否为空("front" == "rear")或满(("rear" + 1) % 数组大小 == "front")。
-
有限大小:由于数组大小是固定的,循环队列的容量有限。这意味着在队列满时,无法再插入更多元素,除非出队一些元素来腾出空间。
-
适用于环形数据存储需求:循环队列通常用于需要周期性地循环存储数据的应用场景,如缓冲区管理、任务调度等。
-
需要小心管理大小和元素数量:由于固定的容量,循环队列需要小心管理队列的大小和元素数量,以避免数据溢出或元素丢失的问题。
总之,循环队列是一种高效的队列数据结构,适用于需要快速入队和出队操作的情况,但需要谨慎处理队列的大小和元素数量以确保正常运作。
三.基本运算
-
初始化:创建一个循环队列时,需要初始化队列的数组大小,以及"front" 和 "rear" 指针的初始位置。通常,"front" 和 "rear" 初始化为相同的值,表示空队列。
-
入队操作:入队操作用于将元素添加到队列中。这包括将元素插入到"rear"指针所指向的位置,然后将"rear"指针向后移动。如果队列已满(即"rear" + 1 等于 "front",考虑循环性质),则入队操作失败。
-
出队操作:出队操作用于移除队列中的元素。这包括从"front"指针所指向的位置移除元素,然后将"front"指针向后移动。如果队列为空(即"front" 和 "rear" 指向相同位置),则出队操作失败。
-
判空和判满:通过检查"front" 和 "rear" 指针的位置关系,可以判断队列是否为空("front" == "rear")或满(("rear" + 1) % 数组大小 == "front",考虑循环性质)。
-
获取队列大小:可以通过计算"rear"和"front"指针的位置关系来获取队列中元素的数量。
这些是循环队列的基本运算,它们使队列能够高效地支持元素的插入和删除,并提供了对队列状态的判断。循环队列的特点在于可以循环利用数组的空间,从而更有效地管理队列中的元素。
四.代码实现
1.定义接口
#define MAXSIZE 100
typedef int DataType;
typedef struct
{
DataType data[MAXSIZE];
int front;
int rear;
}CirclesQueue;
/*循环队列初始化*/
int init(CirclesQueue *Q);
/*入队*/
int enqueue(CirclesQueue *Q, DataType x);
/*队满*/
int isfull(CirclesQueue *Q);
/*出队*/
int dequeue(CirclesQueue *Q, DataType *);
/*队空*/
int isempty(CirclesQueue *Q);
// 输出队列内容
void printQueue(CirclesQueue *Q);
// 获取队列长度
int getLength(CirclesQueue *Q);
// 获取队首元素
DataType getFront(CirclesQueue* Q);
2.初始化
/*循环队列初始化*/
int init(CirclesQueue *Q)
{
Q->front = Q->rear = 0;
return 0;
}
3.入队
/*入队*/
int enqueue(CirclesQueue *Q, DataType x)
{
if(isfull(Q))
{
printf("队列已满!100001\n");
return 100001;
}
Q->rear = (Q->rear+1) % MAXSIZE;
Q->data[Q->rear] = x;
return 0;
}
4.队满
/*队满*/
int isfull(CirclesQueue *Q)
{
return (Q->rear+1)%MAXSIZE == Q->front ? 1 : 0;
}
5.出队
/*出队*/
int dequeue(CirclesQueue *Q, DataType *x)
{
if(isempty(Q))
{
printf("队列为空!100002\n");
return 100002;
}
Q->front = (Q->front+1) % MAXSIZE;
*x = Q->data[Q->front];
return 0;
}
6.队空
/*队空*/
int isempty(CirclesQueue *Q)
{
return (Q->front == Q->rear) ? 1 : 0;
}
7.输出队列内容
// 输出队列内容
void printQueue(CirclesQueue *Q) {
int i;
if (isempty(Q)) {
printf("Queue is empty.\n");
return;
}
i = (Q -> front) %MAXSIZE;
do{
printf(" %d",Q -> data[(i + 1 % MAXSIZE)]);
i = (i+1) %MAXSIZE;
}while(i != Q -> rear);
}
8.获取队列长度
// 获取队列长度
int getLength(CirclesQueue *Q) {
return (Q->rear - Q->front + MAXSIZE) % MAXSIZE; // 循环队列:若rear在前方,则长度为rear-front+MAXSIZE,否则为rear-front
}
9.获取队首元素
// 获取队首元素
DataType getFront(CirclesQueue* Q) {
int i;
i = (Q -> front) %MAXSIZE;
return Q -> data[(i + 1 % MAXSIZE)];
}
五.运行截图
六.完整代码
1.CirclesQueue.h
#define MAXSIZE 100
typedef int DataType;
typedef struct
{
DataType data[MAXSIZE];
int front;
int rear;
}CirclesQueue;
/*循环队列初始化*/
int init(CirclesQueue *Q);
/*入队*/
int enqueue(CirclesQueue *Q, DataType x);
/*队满*/
int isfull(CirclesQueue *Q);
/*出队*/
int dequeue(CirclesQueue *Q, DataType *);
/*队空*/
int isempty(CirclesQueue *Q);
// 输出队列内容
void printQueue(CirclesQueue *Q);
// 获取队列长度
int getLength(CirclesQueue *Q);
// 获取队首元素
DataType getFront(CirclesQueue* Q);
2.CirclesQueue.c
#include <stdio.h>
#include "CirclesQueue.h"
/*循环队列初始化*/
int init(CirclesQueue *Q)
{
Q->front = Q->rear = 0;
return 0;
}
/*入队*/
int enqueue(CirclesQueue *Q, DataType x)
{
if(isfull(Q))
{
printf("队列已满!100001\n");
return 100001;
}
Q->rear = (Q->rear+1) % MAXSIZE;
Q->data[Q->rear] = x;
return 0;
}
/*队满*/
int isfull(CirclesQueue *Q)
{
return (Q->rear+1)%MAXSIZE == Q->front ? 1 : 0;
}
/*出队*/
int dequeue(CirclesQueue *Q, DataType *x)
{
if(isempty(Q))
{
printf("队列为空!100002\n");
return 100002;
}
Q->front = (Q->front+1) % MAXSIZE;
*x = Q->data[Q->front];
return 0;
}
/*队空*/
int isempty(CirclesQueue *Q)
{
return (Q->front == Q->rear) ? 1 : 0;
}
// 输出队列内容
void printQueue(CirclesQueue *Q) {
int i;
if (isempty(Q)) {
printf("Queue is empty.\n");
return;
}
i = (Q -> front) %MAXSIZE;
do{
printf(" %d",Q -> data[(i + 1 % MAXSIZE)]);
i = (i+1) %MAXSIZE;
}while(i != Q -> rear);
}
// 获取队列长度
int getLength(CirclesQueue *Q) {
return (Q->rear - Q->front + MAXSIZE) % MAXSIZE; // 循环队列:若rear在前方,则长度为rear-front+MAXSIZE,否则为rear-front
}
// 获取队首元素
DataType getFront(CirclesQueue* Q) {
int i;
i = (Q -> front) %MAXSIZE;
return Q -> data[(i + 1 % MAXSIZE)];
}
3.main.c
#include <stdio.h>
#include "CirclesQueue.h"
#include <string.h>
#include <stdlib.h>
int main(int argc, char* argv[])
{
CirclesQueue Q;
DataType x;
int cmd;
char yn;
int result;
char welcome[] = "欢迎使用";
int i = 0;
int m = 0;
int n = 0;
for(i=0;i<strlen(welcome);i++)
{
printf("%c",welcome[i]);
for(m=0;m<10000;m++)
for(n=0;n<1000;n++)
{
;
}
}
printf("\n\n\n");
do
{
printf("-----------循环队列演示-----------\n");
printf(" 1. 初始化\n");
printf(" 2. 入队\n");
printf(" 3. 出队\n");
printf(" 4. 队空\n");
printf(" 5. 队满\n");
printf(" 6. 队列元素个数\n");
printf(" 7. 取队首元素\n");
printf(" 8. 输出队列\n");
printf(" 9. 帮助\n");
printf(" 0. 退出\n");
printf(" 请选择(0~6):");
scanf("%d",&cmd);
switch(cmd)
{
case 1:
init(&Q);
printf("队列已初始化!\n");
break;
case 2:
printf("请输入要入队的元素x=");
scanf("%d", &x);
if(!enqueue(&Q,x))
{
printf("元素x=%d已入队\n", x);
}
break;
case 3:
printf("确定要出队(出队会将删除对首元素, y or n, n)?");
getchar();
scanf("%c", &yn);
if(yn == 'y' || yn == 'Y')
{
if(!dequeue(&Q,&x))
{
printf("队首元素【%d】已出队!\n", x);
}
}
break;
case 4:
if(isempty(&Q)) printf("队列为空!\n");
else printf("队列不为空!\n");
break;
case 5:
if(isfull(&Q)) printf("队列已满!\n");
else printf("队列还没有满!\n");
break;
case 6:
printf("队列的长度:%d\n",getLength(&Q));
break;
case 7:
printf("队列首元素: %d\n", getFront(&Q));
break;
case 8:
printf("输出队列:");
printQueue(&Q);
printf("\n");
break;
case 9:
printf("本程序由邵毅豪设计开发\n");
break;
}
}while(cmd!=0);
return 0;
}
七.小结
循环队列是一种基于数组的队列数据结构,具有以下关键特点和操作:
-
固定大小的数组:循环队列使用固定大小的数组来存储元素,该大小在创建队列时确定。
-
循环性质:队列的关键特点是它是循环的,即当"rear"指针到达数组末尾时,下一个元素将从数组的开头插入,使得队列可以循环利用数组空间,避免了数组满了之后无法插入新元素的问题。
-
双指针:循环队列使用两指针,"front"(前指针)和 "rear"(后指针),分别指向队列的第一个元素和最后一个元素。
-
高效的入队和出队操作:由于循环队列的特性,入队和出队操作通常是高效的,时间复杂度通常是O(1)。
-
判空和判满:可以通过指针位置的关系判断队列是否为空("front" == "rear")或满(("rear" + 1) % 数组大小 == "front")。
-
有限大小:由于数组大小是固定的,循环队列的容量有限,因此在队列满时,无法再插入更多元素,除非出队一些元素来腾出空间。
-
适用场景:循环队列通常用于需要周期性循环存储数据的应用场景,如缓冲区管理、任务调度等。
-
需要小心管理大小和元素数量:由于容量固定,循环队列需要小心管理队列的大小和元素数量,以避免数据溢出或元素丢失的问题。
总之,循环队列是一种高效的队列数据结构,适用于需要快速入队和出队操作的情况,但要小心处理队列的大小和元素数量,以确保正常运作。