地理加权回归(GWR)步骤:ArcGIS+GWR4+GeoDa实现

0.数据准备

01-21平均NPP栅格、01-21平均年降水栅格、01-21平均年均温栅格、01-21测区内(省级)各地市GDP shp、01-21各地市人口密度shp

1.创建渔网

将研究区域矢量数据划分为网格(渔网)数据(要选择创建标注点),将测区(省级)划分为10 km ×10 km 的网格,并按需要对测区域进行提取。

先看(整个流程):

https://blog.csdn.net/weixin_47779247/article/details/127473294

再看(细节处理):ArcGIS创建渔网步骤及一些问题-CSDN博客

2.GDP、人口密度shp数据插值并转为矢量

1将面要素的行政区shp图层通过要素转点转换成点要素图层,生成的点为各行政区单元的几何中心,并且生成的点要素均带有面要素图层的属性。

2将点要素图层运用反距离权重法进行插值(根据采样点值创建连续表面,反距离权重法是一种确定性插值方法,其原理是将根据已知周围采样点的测量值和用于确定所生成表面平滑度的指定数学公式将值指定给其他所有位置,使数值铺满整个表面),生成栅格表面

具体操作见视频mp.weixin.qq.com/s/cZVF9RvSGM2HNr9m8ftIaw

3.将要分析的NPP、降水、温度、GDP(插值后的栅格)、人口密度(插值后的栅格)等栅格影像多值提取至点

具体操作:

基于ArcGIS和SPSS对两幅或者多幅遥感影像进行回归分析建模_spss可以处理遥感数据吗-CSDN博客

4.将提取至点的矢量数据进行数据筛选

(1)打开属性表,剔除异常数据(或者将正常数据导出)
我用的是将正常数据导出,分析工具-提取分析-筛选,表达式如下(属性表中我发现异常数据均是-9999)
(2)为每个点创建唯一ID(FID会随数据变动,所以需要再创建一个字段),并计算每个点经纬度

首先给属性表创建三个字段:

创建ID:打开属性表-添加字段-长整型;

longitude:打开属性表-添加字段-双精度;

latitude:打开属性表-添加字段-双精度。

其次,对于ID,右键字段里的ID,打开字段计算器,输入以下即可:

然后,对于X/Y,右键字段,计算几何:

单位十进制度是经纬度,米是地理坐标系。

(3)表转Excel

5.ArcGISOLS普通线性回归(操作看我的图,记得输出报表)

OLS和GWR的结果解读看这里:

https://mp.weixin.qq.com/s/BtFqGsc4ogEeGuh6iNoBIQ

6.下载GWR4软件,进行GWR

完全按这个来:

GWR4软件怎么用+结果解读+结果在ArcGIS中可视化-CSDN博客

7.将点数据(我的是Huigui1.shp)导入GeoDa中进行双变量Moran’s I分析,得到I值、p值、z值

步骤:

(1)创建权重文件

(2)双变量Moran’s I

步骤:空间分析-双变量局部Moran’s I

 

 做完上面把上面的图存起来,最上面两张LISA显著性地图、LISA聚类地图可以加背景地图影像。

Moran’s I 结果解读:https://mp.weixin.qq.com/s/LlOEGbe-iK7lKbI2xDMbzA

欢迎联系讨论!

Best wishes!

                                                                                                                                    Gwy

                                                                                                                             2024年3月15日

### 回答1: ArcGIS地理加权回归是一种基于空间交互作用的回归分析技术,它将经典的普通最小二乘回归与空间信息融合在一起,可以更好地处理空间自相关性的问题,提高了回归分析的精度和可信度。 在传统的最小二乘回归中,假设所有的样本数据是相互独立的,然而在实际应用中,地理空间数据之间往往存在一定的空间关联性,这就会导致分析结果产生偏差或者误差。通过引入空间权重矩阵,地理加权回归可以更好地利用样本数据之间的空间关联性信息,将属性因素和空间因素合并起来,得到更加准确的回归模型,提高了计算的准确性和可靠性。 ArcGIS地理加权回归能够广泛应用于地理信息分析、城市规划、资源管理等领域,在城市规划方面,可以用于分析城市各个区域的房价、商业活力等因素,为规划决策提供科学依据;在资源管理方面,可以用于分析各类资源分布的规律,为资源的合理配置提供支持。 总之,ArcGIS地理加权回归是一种有效地融合地理空间信息的回归分析方法,可以更好地解决空间自相关性的问题,为地理信息分析和规划决策提供有效支持与参考。 ### 回答2: ArcGIS地理加权回归是一种基于空间权重的回归分析方法,是ArcGIS软件中的一个功能模块。该模块主要用于分析和建模两个变量之间的关系,并考虑空间效应对模型结果的影响。 地理加权回归与传统的回归分析相比,最大的不同在于其考虑了空间位置因素的影响,使模型更符合实际情况。其基本思想是,将变量之间的关系建立在空间邻近性上,将邻近的个体作为观测对象,构建邻域矩阵以表达空间相关性,利用空间加权方法来计算回归系数和模型拟合度。 地理加权回归广泛应用于地理信息科学、城市和区域规划、环境科学等领域。其主要作用是研究两个或多个地理变量之间的空间关系,如地形和植被、土地利用和交通等。通过对空间权重的调整和模型结果的验证,给出了更加精确和可靠的分析结论,为决策和规划提供了重要的依据。 与传统回归方法相比,地理加权回归具有较高的预测精度和模型鲁棒性,可以识别出空间非平稳性和异方差性,并得出更加准确的模型结果。但其也存在一些不足之处,比如模型过度匹配、权重矩阵选择不当等问题,需要经过详细分析和调整才能得到比较可靠的结果。 总之,地理加权回归是一种在地理信息科学中广泛应用的空间分析方法,可以为各种领域的研究和规划提供支持,但需要结合实际问题的特点进行具体应用和分析。 ### 回答3: ArcGIS地理加权回归是一种基于地理位置权重的回归分析方法。它使用空间自相关的原理,使得离某一点越近的样本其权重越高,离得越远的样本其权重越低。这种方法可以用于探究空间变量在空间分布上的规律,分析地理现象的空间关联及影响因素等。 与传统回归方法不同的是,ArcGIS地理加权回归考虑了空间自相关性,因此得出的结果更为精准。在进行分析时,首先需要确定一些参数,例如空间自相关性、权重函数等。然后,将数据以空间数据的形式导入到ArcGIS中,在软件中运用地理加权回归模型进行分析。 ArcGIS地理加权回归可以应用于多种领域,例如城市规划、环境保护、农业生产等。它能够有效地解决空间变量之间的多重共线性问题,避免了传统回归模型的缺陷。在实际应用中,我们可以根据具体的问题和数据类型,选择不同的参数和权重函数进行分析,以得出最为准确的结果。 总之,ArcGIS地理加权回归是一种适用于空间数据分析的方法,它考虑了空间自相关性对分析结果的影响,能够为我们提供更为精准的分析结果。在实际应用中,我们需要仔细选择参数以及合适的权重函数等,以确保所得出的结果真实可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值