Anaconda安装

Anaconda

一、什么是Anaconda

镜像快速下载通道

1. 简介

Anaconda在英文中是“蟒蛇”,麻辣鸡(Nicki Minaj妮琪·米娜)有首歌就叫《Anaconda》,表示像蟒蛇一样性感妖娆的身体。

Anaconda(官方网站)就是可以便捷获取包且对包能够进行管理,同时对环境可以统一管理的发行版本。Anaconda包含了conda、Python在内的超过180个科学包及其依赖项。

2. 特点

Anaconda具有如下特点:

  • 开源
  • 安装过程简单
  • 高性能使用Python和R语言
  • 免费的社区支持

其特点的实现主要基于Anaconda拥有的:

  • conda包
  • 环境管理器
  • 1,000+开源库

如果日常工作或学习并不必要使用1,000多个库,那么可以考虑安装Miniconda(下载界面请戳),这里不过多介绍Miniconda的安装及使用。

3.为什么需要Anaconda?

1)Anaconda 附带了一大批常用数据科学包,它附带了 conda、Python 和 150 多个科学包及其依赖项。因此你可以立即开始处理数据。

2)管理包

Anaconda 是在 conda(一个包管理器和环境管理器)上发展出来的。

在数据分析中,你会用到很多第三方的包,而conda(包管理器)可以很好的帮助你在计算机上安装和管理这些包,包括安装、卸载和更新包。

3)管理环境

为什么需要管理环境呢?

比如你在A项目中用了 Python 2,而新的项目B老大要求使用Python 3,而同时安装两个Python版本可能会造成许多混乱和错误。这时候 conda就可以帮助你为不同的项目建立不同的运行环境。

还有很多项目使用的包版本不同,比如不同的pandas版本,不可能同时安装两个 Numpy 版本,你要做的应该是,为每个 Numpy 版本创建一个环境,然后项目的对应环境中工作。这时候conda就可以帮你做到。

二、Anaconda3安装配置

1、安装步骤

1)继续

图片.png

2)我同意合同

图片1.png

3)Install for: Just me还是All Users,假如你的电脑有好几个 Users ,才需要考虑这个问题.其实我们电脑一般就一个 User,就我们一个人使用,如果你的电脑有多个用户,选择All Users,我这里直接 All User,继续点击 Next 。

图片3.png

4)自定义安装位置

图片4.png

5)安装完成,继续

图片5.png

6)询问官网,继续

图片6.png

7)在“Advanced Installation Options”中不要勾选“Add Anaconda to my PATH environment variable.”(“添加Anaconda至我的环境变量。”)。因为如果勾选,则将会影响其他程序的使用。如果使用Anaconda,则通过打开Anaconda Navigator或者在开始菜单中的“Anaconda Prompt”(类似macOS中的“终端”)中进行使用。

除非你打算使用多个版本的Anaconda或者多个版本的Python,否则便勾选“Register Anaconda as my default Python 3.6”。

然后点击“Install”开始安装。如果想要查看安装细节,则可以点击“Show Details”。

图片7.png

8)安装完成。

注意:如果你不想了解“Anaconda云”和“Anaconda支持”,则可以不勾选“Learn more about Anaconda Cloud”和“Learn more about Anaconda Support

图片8.png

2、配置环境

①配置步骤

计算机->查看高级系统设置->环境变量->系统变量->Path

图片9.png

D:\Anaconda3;

D:\Anaconda3\Library\mingw-w64\bin;

D:\Anaconda3\Library\bin;

D:\Anaconda3\Scripts

(中间用英文分号隔开)

②测试成功与否

Win+R->输入cmd->输入conda --version(查看显示结果)![图片]

图片10.png

如果输出conda 4.7.12之类的就说明环境变量设置成功了。

为了避免可能发生的错误,我们在命令行输入conda upgrade --all,先把所有工具包进行升级。

图片11.png

③验证安装结果。

验证安装结果。可选以下任意方法:

① “开始 → Anaconda3(64-bit)→ AnacondaNavigator”,若可以成功启动Anaconda Navigator则说明安装成功。

② “开始 → Anaconda3(64-bit)→ 右键点击Anaconda Prompt → 以管理员身份运行”,在Anaconda Prompt中输入condalist,可以查看已经安装的包名和版本号。若结果可以正常显示,则说明安装成功。

三、Anaconda3使用教程

1.查看版本

conda --version

2.创建环境

#基本命令

conda create --name <env_name> <package_names>

#例子:创建一个 python3.6 的环境, 环境名字为 py36

conda create -n py36 python=3.6

3.删除环境

conda remove -n py36 --all

4.激活环境

source activate py36

5.退出环境

source deactivate

四、Anaconda虚拟环境

一、虚拟环境 virtual environment

它是一个虚拟化,从电脑独立开辟出来的环境。通俗的来讲,虚拟环境就是借助虚拟机docker来把一部分内容独立出来,我们把这部分独立出来的东西称作“容器”,在这个容器中,我们可以只安装我们需要的依赖包,各个容器之间互相隔离,互不影响。譬如,本次学习需要用到Django,我们可以做一个Django的虚拟环境,里面只需要安装Django相关包就可以了,需要Scrapy库,就在开辟一个独立空间来学习Scrapy库相关就行了。

二 、为什么要用虚拟环境

在实际项目开发中,我们通常会根据自己的需求去下载各种相应的框架库,如Scrapy、Beautiful Soup等,但是可能每个项目使用的框架库并不一样,或使用框架的版本不一样,这样需要我们根据需求不断的更新或卸载相应的库。直接怼我们的Python环境操作会让我们的开发环境和项目造成很多不必要的麻烦,管理也相当混乱。如一下场景:

场景1:项目A需要某个框架1.0版本,项目B需要这个库的2.0版本。如果没有安装虚拟环境,那么当你使用这两个项目时,你就需要 来回 的卸载安装了,这样很容易就给你的项目带来莫名的错误;

场景2:公司之前的项目需要python2.7环境下运行,而你接手的项目需要在python3环境中运行,想想就应该知道,如果不使用虚拟环境,这这两个项目可能无法同时使用,使用python3则公司之前的项目可能无法运行,反正则新项目运行有麻烦。而如果虚拟环境可以分别为这两个项目配置不同的运行环境,这样两个项目就可以同时运行。

Tips:其实虚拟环境好处也确实比较多,会给我们项目的开发带来许多的好处,但是初学者,建议还是不要这么折腾,我们的首要目的是更快的掌握更多的知识,研究virtualenv会花费一些额外的经历,而且意志不强的同学很容易遭受打击,但是这个优点我们还是要记下来的方便以后要用的时候能很快的想起。

三、Anaconda创建、激活、退出、删除虚拟环境

在Anaconda中conda可以理解为一个工具,也是一个可执行命令,其核心功能是包管理与环境管理。所以对虚拟环境进行创建、删除等操作需要使用conda命令。

创建虚拟环境

使用 conda create -n your_env_name python=X.X(2.7、3.6等),anaconda 命令创建python版本为X.X、名字为your_env_name的虚拟环境。your_env_name文件可以在Anaconda安装目录envs文件下找到。 指定python版本为2.7,注意至少需要指定python版本或者要安装的包, 在不指定python版本时,自动安装最新python版本。

conda create -n env_name python=2.7

同时安装必要的包

conda create -n env_name numpy matplotlib python=2.7

激活虚拟环境

使用如下命令即可激活创建的虚拟环境

Linux:  source activate your_env_name(虚拟环境名称)

Windows: activate your_env_name(虚拟环境名称)

此时使用python --version可以检查当前python版本是否为想要的(即虚拟环境的python版本)。

退出虚拟环境

使用如下命令即可退出创建的虚拟环境

Linux:  source deactivate your_env_name(虚拟环境名称)

Windows:deactivate env_name,也可以使用activate root切回root环境

删除虚拟环境

删除环境:

使用命令conda remove -n your_env_name(虚拟环境名称) --all, 即可删除。

删除虚拟环境中的包:

使用命令conda remove --name $your_env_name  $package_name(包名) 即可。

分享环境

如果你想把你当前的环境配置与别人分享,这样ta可以快速建立一个与你一模一样的环境(同一个版本的python及各种包)来共同开发/进行新的实验。一个分享环境的快速方法就是给ta一个你的环境的.yml文件。首先通过activate target_env要分享的环境target_env,然后输入下面的命令

conda env export > environment.yml

会在当前工作目录下生成一个environment.yml文件,小伙伴拿到environment.yml文件后,将该文件放在工作目录下,可以通过以下命令

conda env create -f environment.yml

从该文件创建环境,.yml是这个样子的

conda常用命令

conda list:查看安装了哪些包。

conda install package_name(包名):安装包

  • 比如:
  1. conda install --channelhttps://conda.anaconda.org/menpoopencv3 :安装opencv
  2. conda install scikit-learn:安装sklearn
  3. conda install tensorflow-gpu:安装GPU版本的tensorflow
  4. conda install keras:安装keras

conda env list 或 conda info -e:查看当前存在哪些虚拟环境

conda update conda:检查更新当前conda

图片13.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值