hello,大家好,今天给大家带来DSP简单数据分析的部分,DSP技术已经分享了不少内容了,我们来直观的分析一下DSP的数据。
首先是降维
关于降维,大家应该知道的很多了,DSP的数据没有单细胞那么高的维度,所以可以直接用PCA、TSNE、UMAP降维到二维,这里其实跟普通的bulk 转录组数据分析的特点一致。
其实降维的目的在于聚类,看看所选区域是否具有一致的特性,以及不同区域之间是否有内在的差异。下面是一些具体的例子
包括展示基因的表达情况
s5.jpg
关于PCA呢,我讲解了很多了,包括PCA的降维原理以及每个主成份对变异的贡献度,大家可以参考我的文章单细胞PCA分析的降维原理,欢迎大家多多学习。
接下来是解卷积,看每个区域的细胞组成,这个地方最大的依赖就是需要匹配的单细胞数据,解卷积的原理我也讲了很多,大家可以参考我之前分享的文章。
查看特定AOI的细胞类型的组成
下面是一些例子
333.jpg
其实解卷积的目的还是在于知道选定的目标区域细胞组成的不同,通俗地讲就是空间细胞类型的地理分析,空间转录组的分析非常重要,但是单细胞数据更为重要,什么时候我们可以解决单细胞信息丢失的问题,临床转化就近在眼前了。
生活很好,有你更好