DSP(Digital Spatial Profiler)数据分析(降维与解卷积)

本文介绍了在DSP数据分析中,如何通过PCA、TSNE和UMAP进行降维以观察数据分布,以及解卷积技术用于理解区域细胞组成。作者强调了单细胞数据在空间转录组分析中的关键作用,预示着单细胞信息恢复可能带来的临床转化前景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hello,大家好,今天给大家带来DSP简单数据分析的部分,DSP技术已经分享了不少内容了,我们来直观的分析一下DSP的数据。

首先是降维

关于降维,大家应该知道的很多了,DSP的数据没有单细胞那么高的维度,所以可以直接用PCA、TSNE、UMAP降维到二维,这里其实跟普通的bulk 转录组数据分析的特点一致。

其实降维的目的在于聚类,看看所选区域是否具有一致的特性,以及不同区域之间是否有内在的差异。下面是一些具体的例子

包括展示基因的表达情况

s5.jpg

关于PCA呢,我讲解了很多了,包括PCA的降维原理以及每个主成份对变异的贡献度,大家可以参考我的文章单细胞PCA分析的降维原理,欢迎大家多多学习。

接下来是解卷积,看每个区域的细胞组成,这个地方最大的依赖就是需要匹配的单细胞数据,解卷积的原理我也讲了很多,大家可以参考我之前分享的文章。

查看特定AOI的细胞类型的组成

下面是一些例子

333.jpg

其实解卷积的目的还是在于知道选定的目标区域细胞组成的不同,通俗地讲就是空间细胞类型的地理分析,空间转录组的分析非常重要,但是单细胞数据更为重要,什么时候我们可以解决单细胞信息丢失的问题,临床转化就近在眼前了。

生活很好,有你更好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值