方法汇总---细胞临近推断方法比较与优化

作者,Evil Genius
今天根据之前的项目分析,总结一下细胞邻近性的分析方法与优劣势。
参赛选手
一、Gitto,Spatial Single-Cell Transcriptomics Toolbox • Giotto

二、IMCRtools (classic and histoCAT),https://github.com/SchapiroLabor/NEP_IMCRtools

三、MistyR,https://github.com/saezlab/mistyR

四、Squidpy + CellCharter

五、Scimap,SCIMAP - scimap

整体分析框架、Spatial enrichment analysis (SEA)

我们来看看五位选手的表现(项目经验 + 文章引用,仅供大家参考)
分析目标,组织内两种细胞类型的pairwise neighbor preference(NEP),邻域富集或共定位。
两种细胞类型双向的NEP分数,分析NEPs的方向性。
首先做一些简单的指标
邻域定义
量化邻域细胞组成
计算NEP score,即任意两种细胞类型的共定位分数。

评估方法,邻域的准确性

首先是模拟数据的展示,人为生成空间数据,随机分布,弱相关分布,强相关分布
Misty和Scimap表现最为优秀。

再来是共定位的方向性,这个在课程上反复强调了多次。
A细胞共定位于B细胞,不能说明B共定位于A细胞,方向性非常重要。
Misty和Scimap表现最为优秀。

心肌梗塞数据集的实际分析

那么本期最佳选手,Misty和Scimap。
生活很好,有你更好
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值