作者,Evil Genius 今天根据之前的项目分析,总结一下细胞邻近性的分析方法与优劣势。 参赛选手 一、Gitto,Spatial Single-Cell Transcriptomics Toolbox • Giotto 二、IMCRtools (classic and histoCAT),https://github.com/SchapiroLabor/NEP_IMCRtools 三、MistyR,https://github.com/saezlab/mistyR 四、Squidpy + CellCharter 五、Scimap,SCIMAP - scimap 整体分析框架、Spatial enrichment analysis (SEA) 我们来看看五位选手的表现(项目经验 + 文章引用,仅供大家参考) 分析目标,组织内两种细胞类型的pairwise neighbor preference(NEP),邻域富集或共定位。 两种细胞类型双向的NEP分数,分析NEPs的方向性。 首先做一些简单的指标 邻域定义 量化邻域细胞组成 计算NEP score,即任意两种细胞类型的共定位分数。 评估方法,邻域的准确性 首先是模拟数据的展示,人为生成空间数据,随机分布,弱相关分布,强相关分布 Misty和Scimap表现最为优秀。 再来是共定位的方向性,这个在课程上反复强调了多次。 A细胞共定位于B细胞,不能说明B共定位于A细胞,方向性非常重要。 Misty和Scimap表现最为优秀。 心肌梗塞数据集的实际分析 那么本期最佳选手,Misty和Scimap。 生活很好,有你更好