- 博客(18)
- 收藏
- 关注
原创 pycharm快捷键
6.CTRL+SHIFT+[从当前位置选择到代码块的开始。7.CTRL+SHIFT+]从当前位置选择到代码块的结束。5.CTRL+SHIFT+W逐步取消选择代码(块)1.CTRL+SHIFT+ENTER代码补全。11.CTRL+SHIFT+V历史复制粘贴表。14.CTRL+SHIFT+J代码连接为一行。3.CTRL+SHIFT+/块注释。8.CTRL+ALT+I自动缩进。13.CTRL+Y删除当前代码行/块。...
2022-08-02 16:52:24 2764 1
原创 numpy 输入输出
save()、savez()和load()函数以 numpy 专用的二进制类型(.npy、.npz)保存和读取数据,这三个函数会自动处理ndim、dtype、shape等信息,使用它们读写数组非常方便,但是save()和savez()输出的文件很难与其它语言编写的程序兼容。def save(file, arr, allow_pickle=True, fix_imports=True):save()函数:以.npy格式将数组保存到二进制文件中。 .npy格式:以二进制的方式存储文件,在二进制文件第
2022-03-28 23:16:33 913
原创 numpy 排序,搜索和计数
排序numpy.sort()numpy.sort(a[, axis=-1, kind='quicksort', order=None]) Return a sorted copy of an array.axis:排序沿数组的(轴)方向,0表示按列,1表示按行,None表示展开来排序,默认为-1,表示沿最后的轴排序(二维行,列,二维中最后一轴就是列轴。三维,x,y,z轴),将指定轴上的每一个元素都按照从小到大的顺序排列。=None 都拿出来排列默认为-1表示根据最大的维度进行排序,例如该数组为.
2022-03-28 21:41:30 3685
原创 numpy 广播&数学函数
广播:广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。如果两个数组 a 和 b 形状相同,即满足a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。广播规则:对两个数组,分别比较他们的每一个维度(若其中一个数组没有当前维度则忽略),满足:数组拥有相同形状。 当前维度的值相等。 当前维度的值有一个是 1。 or 如果两个数组的维.
2022-03-28 20:41:40 561
原创 逻辑函数 真值测试
numpy.all与numpy.anynumpy.all(a, axis=None, out=None, keepdims=np._NoValue)Test whether all array elements along a given axis evaluate to True.numpy.any(a, axis=None, out=None, keepdims=np._NoValue)Test whether any array element along a given axis eval..
2022-03-28 16:42:38 988
原创 numpy 数组操作、变形
1.更改形状(对数组进行操作时,为了满足格式和计算的要求通常会改变其形状)numpy.ndarray.shape表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即ndim属性(秩)。import numpy as npx = np.array([1, 2, 9, 4, 5, 6, 7, 8])print(x.shape) # (8,)x.shape = [2, 4]print(x)# [[1 2 9 4]# [5 6 7 8]]numpy.ndarray.fla..
2022-03-26 22:55:04 2176
原创 numpy索引、切片与迭代
1.numpy中,在做数组运算和操作时,返回结果不是数组的副本就是视图。而赋值运算不会为数组和任何元素创建副本。numpy.ndarray.copy() 函数创建一个副本。对副本修改,不会影响到原始数据。>>> x = np.array([1, 2, 3, 4, 5, 6, 7, 8])>>> y = x>>> y[0] = -1>>> print(x)[-1 2 3 4 5 6 7 8] #没有创建副
2022-03-26 17:32:58 1986
原创 numpy 索引、切片(交换和反转)
1.交换数组arr中的列1和列3(交换二维数组中的两列)import numpy as nparr = np.arange(9).reshape(3, 3)print(arr)>>> print(arr)[[0 1 2] [3 4 5] [6 7 8]]>>> x = arr[:, [2, 1, 0]] # 行不管,列按下标交换顺序>>> print(x)[[2 1 0] [5 4 3] [8 7 6]]note:交
2022-03-26 14:59:58 3074
原创 numpy 创建数组
1.数组创建numpy 提供的最重要的数据结构是ndarray,它是 python 中list的扩展。(1)通过array()函数进行创建。创建一维数组>>> a = np.array([0, 1, 2, 3, 4])>>> b = np.array((0, 1, 2, 3, 4))>>> print(a, type(a))[0 1 2 3 4] <class 'numpy.ndarray'>创建二维数组c
2022-03-25 22:33:43 3674
原创 python 字典
1.键值对为最显著特征。打印键结果为值,打印值结果是键。2.字典内置方法dict.fromkeys(seq[, value])用于创建一个新字典,以序列seq中元素做字典的键,value为字典所有键对应的初始值。seq = ('name', 'age', 'sex')dic1 = dict.fromkeys(seq)print(dic1)# {'name': None, 'age': None, 'sex': None}dic2 = dict.fromkeys(seq, 10...
2022-03-25 21:08:45 82
原创 python 字符串
1.字符串的切片与拼接类似于元组具有不可修改性,切片通常写成 start:end 这种形式,左闭右开。索引值可正可负,正索引从 0 开始,从左往右;负索引从 -1 开始,从右往左。使用负数索引时,会从最后一个元素开始计数。最后一个元素的位置编号是 -1count(str, beg= 0,end=len(string)) 返回str在 string 里面出现的次数,如果beg或者end指定则返回指定范围内str出现的次数。lower()转换字符串中所有大写字符为小写。upper()转换字符..
2022-03-25 20:50:53 64
原创 python 基础笔记 tuple
1.元组中只包含一个元素时,需要在元素后面添加逗号,否则括号会被当作运算符使用。x = (1)print(type(x)) # <class 'int'>>>> x = (1,)>>> print(type(x))<class 'tuple'>2.创建二维数组x = (1, 10.31, 'python'), ('data', 11)print(x[0][0], x[0][1], x[0][2])# 1 10.3
2022-03-25 20:18:21 367
原创 python基础笔记list
1.列表与元祖的区别:列表 [] 里面的元素可以进行更改,而元组 () 不行。因此,append,extend)、插入 (insert)、删除 (remove,pop) 这些操作都可以用于list。2.列表推导式、字典推导式和元组推导式的区别(打印时),元组为惰性,打印时需将tuple加上:#列表x = [(i, i ** 2) for i in range(6)]print(x)# [(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]..
2022-03-25 17:10:14 403
原创 矩阵乘法区别
@ ,matmul ,dot ,multiply区别tf.matmul(A,C) = np.dot(A,C) = A@C都属于矩阵乘法,而tf.multiply(A,C)= A*C 或者tf.multiply(A,A)= A**2 均属于对应元素乘法np.cross为叉乘元素乘法:np.multiply(a,b)矩阵乘法:np.dot(a,b) 或np.matmul(a,b) 或 a.dot(b) 或直接用 a @ b !唯独注意:*,在 np.array 中重载为元素乘法,在 np.mat.
2022-03-16 21:40:32 933
原创 numpy 切片以及矩阵相乘
1.ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。>>> a = np.arange(10)>>> s = slice(2,7,2) ## 从索引 2 开始到索引 7 停止,间隔为2>>> print(a[s])[2 4 6]2.也可以通过冒号分隔切片参数 start:stop:step 来进行切片操作:>>> a= np.arange(10)>
2022-03-16 21:25:42 1090
原创 三维点云旋转、归一化
1.numpy 归一化 feature_rot= feature - np.expand_dims(np.mean(feature, axis=0), 0) # 去中心化 dist = np.max(np.sqrt(np.sum(feature_rot ** 2, axis=1)), 0) # 计算到原点的最远距离 # print('dist:{}'.format(dist)) feature_rot = feature_rot / dist # scale 归一化2.num
2022-03-16 16:25:11 2683 2
原创 pytorch中维度变换函数
1.torch.size ()这个函数可以看到变换后的矩阵的维度,用法如下:>>>import torch>>>a = torch.Tensor([[[1, 2, 3], [4, 5, 6]]])>>>a.size()torch.Size([1, 2, 3])记忆方法:第一层括号有1个元素,第二个括号有两个元素,第三个括号有3个元素。因此torch.Size([1, 2, 3])。2.torch.view()#将ten
2022-03-14 15:11:31 2255 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人