1.更改形状(对数组进行操作时,为了满足格式和计算的要求通常会改变其形状)
numpy.ndarray.shape
表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim
属性(秩)。
import numpy as np
x = np.array([1, 2, 9, 4, 5, 6, 7, 8])
print(x.shape) # (8,)
x.shape = [2, 4]
print(x)
# [[1 2 9 4]
# [5 6 7 8]]
numpy.ndarray.flat
将数组转换为一维的迭代器,可以用for访问数组每一个元素。
import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = x.flat
print(y)
# <numpy.flatiter object at 0x0000020F9BA10C60>
for i in y:
print(i, end=' ')
# 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
y[3] = 0
print(end='\n')
print(x)
# [[11 12 13 0 15]
# [16 17 18 19 20]
# [21 22 23 24 25]
# [26 27 28 29 30]
# [31 32 33 34 35]]
numpy.ndarray.flatten([order='C'])
将数组的副本转换为一维数组,并返回。order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'k' -- 元素在内存中的出现顺序。
import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = x.flatten() #返回的是拷贝,不能改变数组地值
print(y)
# [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# 35]
y[3] = 0
print(x)
# [[11 12 13 14 15]
# [16 17 18 19 20]
# [21 22 23 24 25]
# [26 27 28 29 30]
# [31 32 33 34 35]]
ravel()
返回的是视图
import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.ravel(x)
print(y)
# [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
# 35]
y[3] = 0
print(x)
# [[11 12 13 0 15]
# [16 17 18 19 20]
# [21 22 23 24 25]
# [26 27 28 29 30]
# [31 32 33 34 35]]
numpy.reshape(a, newshape[, order='C'])
在不更改数据的情况下为数组赋予新的形状。reshape()
函数当参数newshape = [rows,-1]
时,将根据行数自动确定列数。
import numpy as np
x = np.arange(12)
y = np.reshape(x, [3, 4])
print(y.dtype) # int32
print(y)
# [[ 0 1 2 3]
# [ 4 5 6 7]
# [ 8 9 10 11]]
y = np.reshape(x, [3, -1])
print(y)
# [[ 0 1 2 3]
# [ 4 5 6 7]
# [ 8 9 10 11]]
y = np.reshape(x,[-1,3])
print(y)
# [[ 0 1 2]
# [ 3 4 5]
# [ 6 7 8]
# [ 9 10 11]]
reshape()
函数当参数newshape = -1
时,表示将数组降为一维。
import numpy as np
x = np.random.randint(12, size=[2, 2, 3])
print(x)
# [[[11 9 1]
# [ 1 10 3]]
#
# [[ 0 6 1]
# [ 4 11 3]]]
y = np.reshape(x, -1)
print(y)
# [11 9 1 1 10 3 0 6 1 4 11 3]
数组转置:
>>> x = np.random.rand(5, 5) * 10 #取随机数
>>> print(x)
[[5.05157895 3.42077127 9.60091724 7.67972514 5.33624506]
[7.72144193 8.15188233 0.09831899 8.02862418 1.65304559]
[0.79167253 2.16361239 0.25714688 1.78965687 7.51666443]
[2.72353226 3.81206368 3.52424089 5.00717337 8.83226508]
[5.32147403 9.1167779 8.79356762 4.59581239 2.89089182]]
>>> x = np.around(x, 2) #保留两位小数
>>> print(x)
[[5.05 3.42 9.6 7.68 5.34]
[7.72 8.15 0.1 8.03 1.65]
[0.79 2.16 0.26 1.79 7.52]
[2.72 3.81 3.52 5.01 8.83]
[5.32 9.12 8.79 4.6 2.89]]
>>> y=x.T #转置
>>> print(y)
[[5.05 7.72 0.79 2.72 5.32]
[3.42 8.15 2.16 3.81 9.12]
[9.6 0.1 0.26 3.52 8.79]
[7.68 8.03 1.79 5.01 4.6 ]
[5.34 1.65 7.52 8.83 2.89]]
>>> y = np.transpose(x)
>>> print(y)
[[5.05 7.72 0.79 2.72 5.32]
[3.42 8.15 2.16 3.81 9.12]
[9.6 0.1 0.26 3.52 8.79]
[7.68 8.03 1.79 5.01 4.6 ]
[5.34 1.65 7.52 8.83 2.89]]
>>>
更改维度:当创建一个数组之后,还可以给它增加一个维度,这在矩阵计算中经常会用到。
import numpy as np
x = np.array([1, 2, 9, 4, 5, 6, 7, 8])
print(x.shape) # (8,) 秩为1
print(x) # [1 2 9 4 5 6 7 8]
y = x[np.newaxis, :]
print(y.shape) # (1, 8) 秩为2
print(y) # [[1 2 9 4 5 6 7 8]]
y = x[:, np.newaxis]
print(y.shape) # (8, 1) 秩为2
print(y)
# [[1]
# [2]
# [9]
# [4]
# [5]
# [6]
# [7]
# [8]]
numpy.squeeze(a, axis=None)
从数组的形状中删除单维度条目,即把shape中为1的维度去掉。a
表示输入的数组;axis
用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;
import numpy as np
x = np.array([[[0], [1], [2]]]) #第一个中括号一个元素,第二个有3个,第三个有1个元素,形状为1x3x1.
print(x.shape) # (1, 3, 1) #此形式为三维数组,有1个3X1的数组
print(x)
# [[[0]
# [1]
# [2]]]
y = np.squeeze(x) #1x3x1 将维度为1的全部压缩。只剩三个数
print(y.shape) # (3,)
print(y) # [0 1 2]
y = np.squeeze(x, axis=0) #将第一维的1压缩,只剩3x1
print(y.shape) # (3, 1)
print(y)
# [[0]
# [1]
# [2]]
y = np.squeeze(x, axis=2) #将第三维压缩,只剩1x3
print(y.shape) # (1, 3)
print(y) # [[0 1 2]]
y = np.squeeze(x, axis=1)
# ValueError: cannot select an axis to squeeze out which has size not equal to one
数组组合:
如果要将两份数据组合到一起,就需要拼接操作
numpy.concatenate((a1, a2, ...), axis=0, out=None)
Join a sequence of arrays along an existing axis
x = np.array([1, 2, 3]) #形成的是一维数组
import numpy as np
x = np.array([1, 2, 3]).reshape(1, 3) #形成的是二维数组
y = np.array([7, 8, 9]).reshape(1, 3)
z = np.concatenate([x, y])
print(z)
# [[ 1 2 3]
# [ 7 8 9]]
z = np.concatenate([x, y], axis=0) #axis=0 按行添加
print(z)
# [[ 1 2 3]
# [ 7 8 9]]
z = np.concatenate([x, y], axis=1) #axis=1 按列添加
print(z)
# [[ 1 2 3 7 8 9]]
numpy.stack(arrays, axis=0, out=None)
Join a sequence of arrays along a new axis.
沿着新的轴加入一系列数组
import numpy as np
x = np.array([1, 2, 3])
y = np.array([7, 8, 9])
z = np.stack([x, y])
print(z.shape) # (2, 3)
print(z)
# [[1 2 3]
# [7 8 9]]
z = np.stack([x, y], axis=1)
print(z.shape) # (3, 2)
print(z)
# [[1 7]
# [2 8]
# [3 9]]
数组拆分:
numpy.split(ary, indices_or_sections, axis=0)
Split an array into multiple sub-arrays as views into ary.
垂直切分是把数组按照高度切分。
水平切分是把数组按照宽度切分。
参考:numpy.split()函数_CodingALife的博客-CSDN博客_numpy split
import numpy as np
x = np.array([[11, 12, 13, 14],
[16, 17, 18, 19],
[21, 22, 23, 24]])
y = np.hsplit(x, 2)
print(y)
# [array([[11, 12],
# [16, 17],
# [21, 22]]), array([[13, 14],
# [18, 19],
# [23, 24]])]
y = np.split(x, 2, axis=1)
print(y)
# [array([[11, 12],
# [16, 17],
# [21, 22]]), array([[13, 14],
# [18, 19],
# [23, 24]])]
y = np.hsplit(x, [3])
print(y)
# [array([[11, 12, 13],
# [16, 17, 18],
# [21, 22, 23]]), array([[14],
# [19],
# [24]])]
y = np.split(x, [3], axis=1)
print(y)
# [array([[11, 12, 13],
# [16, 17, 18],
# [21, 22, 23]]), array([[14],
# [19],
# [24]])]
y = np.hsplit(x, [1, 3])
print(y)
# [array([[11],
# [16],
# [21]]), array([[12, 13],
# [17, 18],
# [22, 23]]), array([[14],
# [19],
# [24]])]
y = np.split(x, [1, 3], axis=1)
print(y)
# [array([[11],
# [16],
# [21]]), array([[12, 13],
# [17, 18],
# [22, 23]]), array([[14],
# [19],
# [24]])]