第七章 正弦稳态电路

复数

e j φ = c o s φ + j s i n φ e^{jφ}=cosφ+jsinφ ejφ=cosφ+jsinφ
φ = π φ=π φ=π,就有
e j π + 1 = 0 e^{jπ}+1=0 e+1=0
A e j φ = A ( c o s φ + j s i n φ ) = A ∠ φ Ae^{jφ}=A(cosφ+jsinφ)=A∠φ Aejφ=A(cosφ+jsinφ)=Aφ
A e − j φ = A ( c o s φ − j s i n φ ) = A ∠ − φ Ae^{-jφ}=A(cosφ-jsinφ)=A∠-φ Aejφ=A(cosφjsinφ)=Aφ
− ( A e j φ ) = − A ( c o s φ + j s i n φ ) = A [ c o s ( φ + π ) + j s i n ( φ + π ) ] = A e j ( φ + π ) = A ∠ ( φ + π ) -(Ae^{jφ})=-A(cosφ+jsinφ)=A[cos(φ+π)+jsin(φ+π)]=Ae^{j(φ+π)}=A∠(φ+π) (Aejφ)=A(cosφ+jsinφ)=A[cos(φ+π)+jsin(φ+π)]=Aej(φ+π)=A(φ+π)
− ( A e − j φ ) = − A ( c o s φ − j s i n φ ) = A [ c o s ( φ + π ) − j s i n ( φ + π ) ] = A e − j ( φ + π ) = A ∠ − ( φ + π ) -(Ae^{-jφ})=-A(cosφ-jsinφ)=A[cos(φ+π)-jsin(φ+π)]=Ae^{-j(φ+π)}=A∠-(φ+π) (Aejφ)=A(cosφjsinφ)=A[cos(φ+π)jsin(φ+π)]=Aej(φ+π)=A(φ+π)

复功率

复功率=电压*电流共轭???为什么取共轭

电流取共轭的目的是要取电流相位角φ的负值,即-φ。这样在S=U乘以I的共轭就能够表示其物理意义:视在功率等于电压乘以电流再乘以他们之间的夹角。有功功率P=Scosφ,无功功率Q=Ssinφ。

因为复功率的相位应当和阻抗的相位一致,而按照相量定义电流相位等于电压相位-阻抗相位,如果直接电压乘电流,求出来的相位和阻抗相位不相等。为了最后能和阻抗相位一致,需要电压相位减电流相位才能得到阻抗相位。如何取得电流负相位呢?取共轭呀!这样,电压乘电流的共轭得到的那个复数,相位就和阻抗一致了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值