复数
e
j
φ
=
c
o
s
φ
+
j
s
i
n
φ
e^{jφ}=cosφ+jsinφ
ejφ=cosφ+jsinφ
若
φ
=
π
φ=π
φ=π,就有
e
j
π
+
1
=
0
e^{jπ}+1=0
ejπ+1=0
A
e
j
φ
=
A
(
c
o
s
φ
+
j
s
i
n
φ
)
=
A
∠
φ
Ae^{jφ}=A(cosφ+jsinφ)=A∠φ
Aejφ=A(cosφ+jsinφ)=A∠φ
A
e
−
j
φ
=
A
(
c
o
s
φ
−
j
s
i
n
φ
)
=
A
∠
−
φ
Ae^{-jφ}=A(cosφ-jsinφ)=A∠-φ
Ae−jφ=A(cosφ−jsinφ)=A∠−φ
−
(
A
e
j
φ
)
=
−
A
(
c
o
s
φ
+
j
s
i
n
φ
)
=
A
[
c
o
s
(
φ
+
π
)
+
j
s
i
n
(
φ
+
π
)
]
=
A
e
j
(
φ
+
π
)
=
A
∠
(
φ
+
π
)
-(Ae^{jφ})=-A(cosφ+jsinφ)=A[cos(φ+π)+jsin(φ+π)]=Ae^{j(φ+π)}=A∠(φ+π)
−(Aejφ)=−A(cosφ+jsinφ)=A[cos(φ+π)+jsin(φ+π)]=Aej(φ+π)=A∠(φ+π)
−
(
A
e
−
j
φ
)
=
−
A
(
c
o
s
φ
−
j
s
i
n
φ
)
=
A
[
c
o
s
(
φ
+
π
)
−
j
s
i
n
(
φ
+
π
)
]
=
A
e
−
j
(
φ
+
π
)
=
A
∠
−
(
φ
+
π
)
-(Ae^{-jφ})=-A(cosφ-jsinφ)=A[cos(φ+π)-jsin(φ+π)]=Ae^{-j(φ+π)}=A∠-(φ+π)
−(Ae−jφ)=−A(cosφ−jsinφ)=A[cos(φ+π)−jsin(φ+π)]=Ae−j(φ+π)=A∠−(φ+π)
复功率
复功率=电压*电流共轭???为什么取共轭
电流取共轭的目的是要取电流相位角φ的负值,即-φ。这样在S=U乘以I的共轭就能够表示其物理意义:视在功率等于电压乘以电流再乘以他们之间的夹角。有功功率P=Scosφ,无功功率Q=Ssinφ。
因为复功率的相位应当和阻抗的相位一致,而按照相量定义电流相位等于电压相位-阻抗相位,如果直接电压乘电流,求出来的相位和阻抗相位不相等。为了最后能和阻抗相位一致,需要电压相位减电流相位才能得到阻抗相位。如何取得电流负相位呢?取共轭呀!这样,电压乘电流的共轭得到的那个复数,相位就和阻抗一致了。