数字化及数字化转型与AI之间的关系度分析

#数字化#数字化转型#AI#

数字化与数字化转型

首先,数字化是指将人们所生活的真实世界和虚拟的数字表达链接起来,从而寻求全新的商业模式和服务模式的一种形态。数字化转型则是基于数字化技术的发展,对传统企业提出了将原有业务与数字化技术融合,进行创新并实现企业业绩增长与持续发展的变革要求。
数字化转型我们理解是企业战略层面的概念,它并不应该是追求眼前效益的机动战术。

其本质是通过数字技术和数学算法显性切入企业业务流,形成智能化闭环,使得企业的生产经营全过程可度量、可追溯、可预测、可传承,从而重构了质量、效率、成本的核心竞争力。
而企业的数字化准确的说可以理解为内部管理的数字化、外部商业形态的数字化和生态数字化三大部分,由此对应到技术服务层面,就是要实现系统的内部垂直系统的集成化应用、外部集成内容的连接以及生态的端到端合作集成。
相对于平台经济和平台模式则是数字化转型和落地的主要实现方式。对于行业龙头的大企业而言,需要转型成为行业性和社会化平台,最终形成生态链,从而保持行业领袖地位。对于行业内的中小企业来说,则要成为行业平台上的专业化合作伙伴,让自身的价值链在平台上占据重要一环,保持生态合作。

而数据和AI的结合是数字化转型的核心。因为AI技术赋予机器人类的智慧,不仅能算还会记,还能够会听能懂,听懂自然语言,理解自然语义、并根据设定标准做出判断。

数据与AI

数据在数字化转型中有着核心地位,重点在于如何通过数据收集、整合和分析,实现基于数据的决策制定,提高决策的科学性和准确性,如在金融领域通过AI进行风险评估和信贷审批,在医疗领域通过AI辅助诊断和个性化治疗方案制定等。

具体而言,通过数据与AI结合,从而给机器进行服务赋能。

基于AI基础能力,实现快速计算和大规模的数据处理,如金融行业的高频交易系统依赖于高速的运算智能来执行复杂的数学模型,从而实现精准的市场预测和交易决策。而AI的感知能力,则通过图像识别技术和语音识别技术,能够让设备更好的“看”到图像并进行分类(如自动驾驶汽车识别交通标志),或“听”懂人类语言(如智能语音助手理解用户的指令)。当然,在高级阶段,则是期望AI能够智能化,能够理解和推理相关的数据信息,并基于相关的规范标准做出合理的判断。

通过以上三个步骤,可见借助AI和大数据分析,企业和机构可以为每个用户提供个性化的服务体验。如电商平台可以根据用户的浏览历史和购买记录推荐感兴趣的商品,在线教育平台可以根据学生的学习进度和测试成绩定制专属的学习路径。同样,结合AI、云计算和物联网技术,智能工厂则可以利用先进的自动化设备和机器人完成生产任务,同时借助大数据分析不断优化生产流程,降低成本,提升产品质量。此外,在公共服务领域,通过整合城市各个部门的数据资源,智慧城市能够实现交通、能源、环境等多个领域的协同管理和智能决策。如智能交通系统可以根据实时路况调整信号灯时长,缓解交通拥堵,智能电网可以根据用电需求自动调节电力供应,减少能源浪费。

所以说,数字化是利用数字技术来改变商业模式并提供新的收入和价值创造机会,是转向数字业务的过程。

数字化与信息化

数字化与信息化相对应,具有如下核心特点。
1、从应用的广度来看,数字化不是企业内一个部门、一个流程、一个系统的变革,而是在企业整个业务流程中进行数字化的打通,会牵扯到企业所有组织、所有流程、所有业务、所有资源、所有产品、所有数据、所有系统,甚至会影响上下游产业链生态。
2、从应用的深度来看,数字化为企业带来了从商业模式、运营管理模式到业务流程、管理流程的全面创新和重塑。数字化打破了部门壁垒、数据壁垒,延伸到上下游产业链,实现跨部门、跨单位的系统互通、数据互联。在数字时代,数据被全线打通融合并形成数字资产,赋能业务、运营、决策。
3、从思维模式来看,如果说信息化时代是以流程为核心,那么数字化时代一定是以数据为中心。在数字时代,企业的思维模式应从流程驱动转向数据驱动。数据是物理世界在数字世界中的投影,是一切的基础,而流程和系统则是产生数据的过程和工具。

关键是数字化并不是对信息化的推倒重来,而是要基于对企业以往信息系统的整合优化,提升管理和运营水平,用新的技术手段提升企业的数字化能力,以支撑企业满足数字时代的新要求。

在数字时代,当整个世界被连接在一起之后,过去从研发生产端到销售端的传统商业模式被颠覆,取而代之的是从市场端到研发生产端到销售终端的现代商业模式,过去简单的、线性的产业链被击破,取而代之的是更加高效的,以消费者为核心的生态系统。互联网将企业和客户连接在一起,打破了信息不对称,不仅使企业与客户之间的沟通变得越来越实时和没有缝隙,也让潜在的客户能够听到真实客户的声音,让场景的感知与认知更加清晰、更加明显。

在场景服务中,针对场景化的数据治理的目标是短期、快速、有效,从根治特定的业务数据问题从而提升管理和业务人员的满意度,同时逐步提升企业的数据管理能力。其突出的价值在于,可以快速产生业务效果,便于获得领导和业务方的认可,从而让数据治理的成功经验得以在全企业范围快速推广,逐步扩大数据治理工作对于业务的影响力。

拆解开来,主要特点是“业务切入”,建立“原因分析",“形成价值导向”,“构建一体化的解决方案”且“功能内容能够持续继承和服务闭环”。

从技术服务角度,主要是人和世界的数字化、人和世界的数据化、数字的孪生化,最终虚拟形态和现实世界的真实个体,两个世界的群体组织相互连接、相互影响、协同进化。

初步理解数据与AI之间的服务层级。

1、辅助分析,实现语言交互方式的数据查询与探索,能够支撑一般的基础模型服务。

2、部分自主分析,能够支撑特定的应用场景和服务环境,能够基于特定的数据场景做出一般性的分析。

3、有条件的自主分析,基于大模型与知识图谱的训练推理,能够基于知识体系做出异常内容的识别分析。

4、较为成熟的自主分析,能够基于分析结果进行数据挖掘和持续判断,能够满足大多数通用场景的应用能力。

5、专业化的自主分析,即能够像专业人士,给予专业化的分析判断和建议。

总体而言,应该是一个数据与智能不断强化,人工逐渐减弱的服务体系与过程。

往往针对实际的项目与需求,都会按照需求的内容做出一定程度的忽略,而真相往往是需要找到高价值的应用场景,从而基于数据驱动的应用场景实现功能的开发与升级,其中对应的是服务对象不断发展的从低到高的需求,层级的高低则是由人机协同的程度来体现。

如果在这个环境,多思考一点,将智能发展到智能体,从服务角度看,首先针对主要的内容事项核心是要用户能看见,将服务数据结果呈现给用户,只反映客观事实,不做判断。其次,再是在反馈结果的形态下,帮助用户分辨,帮助其判断好坏优劣,基于数据参照做出行动建议(有点算法茧房的味道),并根据合理化建议代替用户决策和执行,最后实现虚拟与实际的打通。当然这是一个理想化的过程,而从实践到虚拟的同步还有一段路。

记得前期一文中描述到,如斯坦福小镇的数据不更新会存在什么问题?

在此重复描述,其实数据采集是数据驱动闭环的起点,是创造数据、重构系统、建立连接的过程。以往的数据采集是伴随运营过程简单记录,最主要的特点是数据往往伴随着一定的运营活动而产生并记录在数据库中,这种数据的产生方式是被动的、伴随性的。第二种是用户原创,随着流媒体、移动互联网设备的快速发展,由用户通过电商点评、平台意见发布等主动产生数据。
而现在感知式系统阶段,人们已经有能力制造极其微小的带有处理功能的传感器,通过对传统信息系统的重构,可以将这些感知设备广泛布置于企业内外环节的运转中进行监控。这些设备会源源不断地产生新数据,这种数据的产生方式是自动的。数据产生经历着被动、主动和自动三个阶段,这些被动、主动和自动产生的数据共同构成了数据驱动的数据来源,而自动式的,由系统不间断创造的数据是数据驱动最主要的数据产生方式。

同时,互联网、移动互联网、物联网的突破性发展颠覆了人与人、人与物、物与物之间的连接方式,企业、供应商、用户、监管部门以及社会公开的数据通道得以打通,多维度、多种类的海量数据得以被实时、动态地采集,并在系统中汇总和融合。在这一过程中,系统又能通过数据对比、计算产生新一轮的高阶数据。

所以基于数据的不断衍生和更新学习喂养,似乎可以解决数据采集、治理、更新的循环过程。对此,数据化的更新与AI场景服务的结合,可以看作数字化应用场景、数字化协同场景、数字化设计场景、数字化验证场景、数字化决策场景,通过需求管理、价值识别、能力迭代,从而基于数据建立高效协同的智能服务体系。

人工智能、数据、机器

这三者之间的协同,可以促进生产数字化并大幅提升企业生产的能力。

1、基于生产数字化,企业能够快速响应用户需求,同时兼顾大规模生产效益的运作战略,将顾客个性化定制生产的柔性与大规模生产的低成本、高效率相结合,寻求两者的高效平衡点。
2、针对营销手段的花样翻新、及时快捷的物流供应链都基于产品生产环节的快速响应和稳定供应,将所有变化都会归结到更高效的机器,更快速的物料流动,依赖一个串联始终、不断变速的供应链系统。其生产的数字化打通了端到端价值链,将生产端和供应端连接在一起,生产端和供应端的信息能实现双向实时交流,从而使企业从营销到供应,从产品到生产的所有环节都处于高效运营的协同状态,极大提升供应链的反应能力。
3、生产数字化转型的过程一般伴随大量数控设备和工业机器人的应用。工业机器人能够在共享工作空间中与人类进行安全物理交互的人机协作、人工智能、机器学习的趋势更加明显,工业机器人与企业整体数字化转型的结合更加紧密,也是生产数字化的重要表现。

在新一代企业数字化架构下,企业依旧是真实世界中的一切,从企业外部的生态、产业链到企业内部的价值链、组织、制度、流程都基于信息系统和网络在线连接起来,在虚拟世界中形成镜像。而真实世界与虚拟世界打通,实现无缝交互并产生大量数据。利用云端的算法和算力,一方面推动真实物理世界中的效率提升、商业模式创新与生态演进,另一方面推动虚拟数据世界中的数据应用,实现数据驱动。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值