前端时间,DeepSeek的爆火引发了全社会对AI的大规模讨论,更重要的是促使各界人士从旁观者转变为参与者,掀起了一波真实的人工智能落地浪潮。在孕育了AI的互联网生态中,AI所引发的变化最为显著且影响更为彻底。
有种街头巷尾,言谈之间无DeepSeek则无内容,偶有听到“第普希克”等各类词汇,转头望去,暮年银发老者笑谈之间,也不妨是一美事。
广泛探讨DeepSeek的场景机会与价值之时,其流量与感知早已被拉满。果然,广告作为互联网生态最主要的商业模式,往往是走在当前AI技术应用的最前端。
在与Dr.Xing Peng(Dr. Xing Peng, The University of Tokyo)交流时,其指出搜索、推荐、广告构成了互联网生态的核心技术栈,同时也为AI提供了海量的数据、高度发达的模型训练平台以及丰富的可落地业务场景。
的确,全球主要的AI研发投入和最先进技术大多来自谷歌、Meta等大型互联网公司,这些公司凭借广告业务的稳定现金流,能够以更长期的视角投入研发,展现出强大的定力。而除了OpenAI等少数依靠大量融资的创业公司之外,其他AI技术的发展也离不开这些互联网巨头的支持。包括国内的互联网大厂,可以说,AI技术也正在深刻地改变互联网广告业务的技术和商业逻辑。
试想一下:
AI为广告行业带来了全新的产品和广告形式,他突破了传统广告的局限。AI使得广告素材的生产效率得到了百倍提升,也极大地提高了广告制作的效率和质量。在如AI让手机语音助手有望成为新的超级入口,从而重塑硬件厂商与APP之间的流量分配格局。在双手被占用(如驾车)或多任务场景下,语音交互的价值尤为凸显。未来,用户或许只需简单地说一句“Siri,帮我点份外卖,和上周一样”,就能轻松完成过去需要多步操作的任务,这种便捷的交互方式将为广告和商业服务带来新的机遇。
而在广告技术的幕后,AI早已深度介入,并正在酝酿广告行业的范式升级。从传统的“千人一面”广告,到互联网时代的“千人千面”广告,再到AI时代即将实现的为每个用户定制的实时生成广告,即“一人千面”广告,广告的精准度和个性化程度不断提升。
此前,Yang 博士(Jonathan.Yang)早就指出,在广告领域,AI的深度介入正推动行业迈向“一人千面”的新时代。AI借助深度学习技术,能够从海量多维度数据中挖掘用户行为模式,精准构建用户画像,实时生成高度个性化的广告内容。与传统“千人一面”广告和互联网“千人千面”广告相比,AI广告通过神经网络和算法优化,实现对用户需求的超前洞察与实时响应,不仅提升用户体验,更有效引导用户行为。AI让手机真正成为“随身智能助手”。自然语音交互——这一最符合人类直觉的交互方式,将重新崛起为最重要的流量入口之一。
以“点午餐外卖”为例,未来的流程可能是这样的:
-
用户对Siri说:“Siri给我点个外卖。”
-
外卖APP通过API竞价,取得服务执行权(假设用户手机上没有安装外卖APP)。
-
外卖APP通过后台API,向Siri提供商家、菜谱、价格列表等信息。
-
Siri根据用户的偏好和历史记录选择午餐。
-
Siri调起支付App完成付费。
-
外卖APP通知骑手和饭店开始送餐。
(测试来源:OPE.人工智能 --- OPE.AI)
换个角度,即用户对Siri发出指令后,Siri通过A2A接口让外卖APP进行API竞价获取服务权,并从后台获取商家及菜品信息,接着又利用MCP的强大计算能力,结合用户偏好和历史记录进行个性化选择,调起支付App完成付费,最后通知外卖APP安排送餐,整个流程高效、安全且个性化。
import requests
# 假设的API接口地址
API_URL = "https://api.com"
# 用户偏好和历史记录
user_preferences = {
"favorite_cuisines": ["Italian", "Chinese"],
"price_range": {"min": 10, "max": 30},
"history": ["Pizza", "Sushi"]
}
# 用户语音指令
def user_says(command):
print(f"User says: {command}")
return command
# A2A接口:外卖APP竞价获取服务权
def get_service_provider():
print("Requesting service provider via A2A...")
response = requests.post(f"{API_URL}/bid", json={"user_prefs": user_preferences})
if response.status_code == 200:
return response.json()["app"]
else:
raise Exception("Failed to get service provider")
# A2A接口:获取商家和菜品信息
def get_menu(app):
print(f"Fetching menu from {app} via A2A...")
response = requests.get(f"{API_URL}/{app}/menu")
if response.status_code == 200:
return response.json()["menu"]
else:
raise Exception("Failed to fetch menu")
# MCP:个性化选择午餐
def personalize_choice(menu):
print("Personalizing lunch choice using MCP...")
# 简化的AI算法:根据用户偏好和历史记录选择菜品
for item in menu:
if item["cuisine"] in user_preferences["favorite_cuisines"] and item["price"] <= user_preferences["price_range"]["max"]:
return item
return menu[0] # 默认选择第一个菜品
# A2A接口:调起支付App完成付费
def make_payment(order):
print("Making payment via A2A...")
response = requests.post(f"{API_URL}/pay", json={"order": order})
if response.status_code == 200:
return response.json()["payment_status"]
else:
raise Exception("Payment failed")
# A2A接口:通知外卖APP开始送餐
def notify_delivery(app, order):
print(f"Notifying {app} to start delivery via A2A...")
response = requests.post(f"{API_URL}/{app}/notify", json={"order": order})
if response.status_code == 200:
return response.json()["status"]
else:
raise Exception("Failed to notify delivery")
# 主流程
def order_lunch():
command = user_says("Siri给我点个外卖")
if "点个外卖" in command:
app = get_service_provider()
menu = get_menu(app)
lunch_choice = personalize_choice(menu)
payment_status = make_payment(lunch_choice)
if payment_status == "success":
delivery_status = notify_delivery(app, lunch_choice)
print(f"Lunch ordered: {lunch_choice['name']}")
print(f"Delivery status: {delivery_status}")
else:
print("Failed to complete order due to payment issue")
else:
print("Command not recognized")
# 执行主流程
order_lunch()
很明显,AI代理经济将催生的入口权力再分配:从「APP霸权」到「智能中介」
由此,通过AI代理决策(如Siri选择外卖平台、商家及支付方式),硬件厂商首次获得商业化入口控制权,可对每个决策节点收费。同时,APP呈现"去实体化"趋势——用户无需安装前端应用,服务商仅需提供后端API。这彻底颠覆了传统以APP为中心的流量分配模式:开屏广告等形态消失,硬件厂商借AI助手掌握流量分发权,而超级APP则通过数据壁垒展开反制,一场围绕"隐形入口"的博弈正在爆发。
或者说,不仅是硬件厂商,各家APP都在AI带来的新一轮“入口争夺战”中也生怕掉队。实际落地中,上面的点餐案例中,每个APP并不会主动把各种APP内的数据都交给硬件厂商的AI助手,这里将有一轮新的博弈。
与之相对的,电商与服务类平台将会迎来挑战。电商平台和交易服务平台的流量困扰已持续多年,一直维持着“投广告-用户进站-卖广告”的不断循环。但这一循环可能会变得不再平衡,AI搜索与助手的崛起将会进一步削弱交易平台本身的入口话语权。其中大入口可能尚有能力“抗争”,而酒旅、生活服务等平台则大概率摆脱不了被“去皮”的命运。好消息则是,这些平台也同样可以从AI搜索技术升级中获益,用户通过对话式搜索商品与服务,一定会带来更高的广告变现效率。
此外,随着AI入口的整合能力提升,大部分工具(天气、计算器、翻译等)的流量入口将被进一步挤压,甚至是直接被各类AI入口直接替代。
具体而言,就实际更为广泛更为关注的社交娱乐领域,AI的实时生成能力也正在为社交与娱乐场景的广告领域注入强大动力。如在游戏和影视综领域,AI凭借出色的环境理解与实时生成能力,精准识别潜在广告位,有效扩充库存,并助力广告主无缝融入场景,达成自然营销;在社交及内容社区方面,AI可依用户发布内容及社交圈特点自动植入广告,激发互动与效仿,同时降低制作成本。总体而言,AI不仅解决了传统广告的诸多难题,更提升了广告与内容的融合度,增强了用户体验,为广告主带来了更精准高效的投放效果,推动了整个行业的创新变革。
从积极的视角,生成式AI会不断创造出更多新的广告位与玩法,而这样的改变,会一定程度上缓解当前广告同质化-标题党-低质量的问题,通过好看、好玩、好互动的新形态,在保持和提高ECPM的同时,给予广告主和代理商更多的创意空间。虽然当前AI尚不能充分理解素材制作的要求,素材制作的主力也依旧是人工,而AI则主要用来做扩图/裁剪、视频拼接等简单任务,或是基于基本产品元素制作大规模铺量素材(要求较低)。但我们看到,随着去年年末AI视频生成能力的爆发,AI视频素材的成熟也指日可待。
从不那么积极的观点上看,AI的实时生成广告确实面临着不少实际操作难题:
素材质量把控上,由于品牌方没有足够时间人工检查,这就可能出现广告效果不理想、与品牌调性不符等问题,影响用户对品牌的认知。
在素材合规性方面,平台如果无法及时人工审核,会导致一些不符合法律法规、道德规范的广告内容出现,给品牌和平台都带来风险。
而计价模式也是亟待解决的难题,传统竞价模式被打乱,合约售卖或者新的竞价方式还在探索阶段,没有成熟方案。
所以说,现阶段实时生成广告更多停留在理论探讨层面,尚未有平台能够真正将其落地实施。预计在未来很长一段时间内,它将和现有的“素材预生成广告”并存,一边不断优化自身,一边与传统广告相互补充,共同推动广告行业的发展。
不过,这也不代表实时生成广告没有未来。随着技术的进步,AI生成素材的质量和可控性会不断提高,审核机制也会更加智能化、自动化。在计价模式上,也会逐渐摸索出一套完善的体系。所以,我们还是可以对实时生成广告的发展保持期待,相信它会在克服困难后为广告行业带来更大的变革。