03、多特征LSTM模型学习

01 传统RNN模型的缺陷:

  1. 长期依赖问题导致的梯度消失或者梯度爆炸:众所周知RNN模型是一个具有记忆的模型,每一次的预测都和当前输入以及之前的状态有关,但是我们试想,如果我们的句子很长,他在第1000个记忆细胞还能记住并很好的利用第1个细胞的记忆状态吗?答案显然是否定的!!具体可以阅读https://blog.csdn.net/jump882/article/details/123717798的公式推导。

02  LSTM简述(长短时记忆网络)

LSTM是一种常用于处理序列数据的深度学习模型,与传统的 RNN(循环神经网络)相比,LSTM引入了三个门( 输入门、遗忘门、输出门,如下图所示)和一个 细胞状态(cell state),这些机制使得LSTM能够更好地处理序列中的长期依赖关系。

  1. 遗忘门:通过x和ht的操作,并经过sigmoid函数,得到0,1的向量,0对应的就代表之前的记忆某一部分要忘记,1对应的就代表之前的记忆需要留下的部分 ===>代表复习上一门线性代数所包含的记忆,通过遗忘门,忘记掉和下一门高等数学无关的内容(比如矩阵的秩)

  2. 输入门:通过将之前的需要留下的信息和现在需要记住的信息相加,也就是得到了新的记忆状态。===>代表复习下一门科目高等数学的时候输入的一些记忆(比如洛必达法则等等),那么已经线性代数残余且和高数相关的部分(比如数学运算)+高数的知识=新的记忆状态。

  3. 细胞状态:

  4. 输出门:整合,得到一个输出===>代表高数所需要的记忆,但是在实际的考试不一定全都发挥出来考到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值