- 博客(22)
- 收藏
- 关注
原创 Python实战案例讲解:待办事项管理器
本文展示了两个Python待办事项管理器的实现案例。第一个是简单的命令行版本,演示了任务的增删改查基本操作;第二个是使用Tkinter开发的GUI版本,具备完整的任务管理功能,包括任务添加、编辑、删除、筛选、排序以及数据持久化存储。GUI版本详细介绍了界面布局、数据加载保存、任务状态更新等核心功能实现方法,并提供了完整的代码实现。该工具适合Python初学者学习GUI开发和数据管理,也可作为个人时间管理的基础工具。
2025-06-12 12:30:00
648
原创 C盘清理方法
摘要:本文介绍了多种C盘清理方法,包括删除临时文件、卸载程序、清理系统更新残留等基础操作,以及迁移虚拟内存、调整休眠文件等高级技巧。建议使用StorageSense自动化清理工具,配合TreeSize分析空间占用,并创建自定义清理脚本。注意事项包括谨慎处理WinSxS组件、专项清理浏览器缓存和管理恢复分区空间,强调避免直接删除系统关键文件导致崩溃。通过这些方法可有效释放C盘空间,保持系统稳定运行。
2025-06-11 13:33:45
78
原创 Python字符串操作完全指南:从入门到实战
本文详细介绍了Python字符串的核心操作方法。内容包括字符串创建、索引切片、常用方法(分割连接、清理格式化、查找替换、大小写转换)以及判断方法。通过三个实战案例(文本统计、密码检测、CSV解析)展示了字符串处理的实际应用。文章还解答了反转字符串、高效拼接等常见问题,并提供了学习建议。掌握这些技巧能有效提升文本处理能力,为Python编程打下基础。
2025-06-10 12:30:00
159
原创 Python函数全面详解:从入门到精通
本文系统介绍了Python函数的核心知识点。首先阐述了函数的基本概念和定义语法,然后详细讲解了四种参数类型(必需参数、默认参数、关键字参数、可变参数)的使用方法。接着探讨了返回值机制与变量作用域规则,以及函数作为参数、嵌套函数和lambda表达式等高级特性。文章还强调了文档字符串的重要性,并提供了成绩管理和文件处理两个综合案例。最后针对常见问题给出解决方案,并提出了函数设计的最佳实践建议,包括单一职责原则和命名规范等。通过掌握这些内容,开发者可以编写出更加模块化、可维护的Python代码。
2025-06-10 08:00:00
363
原创 Python变量与数据类型深入学习笔记
变量是程序中存储数据的容器,可以理解为数据的"标签"或"名字"。:Python变量不需要声明类型,类型由赋值的数据决定:变量可以反复赋值,类型可以改变字母/下划线开头可包含字母、数字和下划线区分大小写不能使用关键字(如if、for等)
2025-06-09 08:00:00
317
原创 Python爱心代码分享--增加彩蛋
这是一款基于tkinter的爱心动画互动程序,包含两种互动状态:点击"喜欢❤️"按钮会触发两颗心靠近合并的动画,并有20%概率显示古典情诗彩蛋;点击"不喜欢💔"按钮则会播放心碎散落动画,并有33%概率显示安慰诗句彩蛋。程序采用数学参数方程绘制爱心,支持心跳动画、爱心合并特效和破碎粒子效果,状态标签会实时显示"怦然心动"、"心碎了"等情感状态。彩蛋诗句精选自古典诗词,包括"死生契阔,与子成说"等经典名句,为互动增添文艺气息。
2025-06-09 02:52:47
201
原创 Python初体验学习笔记
Python是一种高级解释型编程语言,以其简洁语法、跨平台特性和丰富的标准库著称,广泛应用于Web开发、数据分析和人工智能等领域。建议安装Python 3.10+版本,并配置VSCode或PyCharm作为开发环境。学习Python应从基础开始,如编写"Hello World"程序,了解解释器执行过程,并通过实践作业巩固知识。初学者要掌握Python 2和3的区别,选择合适的解释器,并养成每日编程的习惯。后续可深入Python语法和数据结构的学习。
2025-06-08 15:55:54
750
原创 如何使用 DeepSeek 帮助自己的工作?
经过团队内部评估,由于当前技术方案中涉及[具体模块/流程]的深度联调,若强行压缩时间可能导致[具体风险,如“系统稳定性下降”或“关键测试环节无法覆盖”]。:比传统翻译工具更贴合行业习惯,避免把“区块链共识机制”译成“block chain agreement”(正确应为consensus mechanism)。:“写一封给潜在客户的英文跟进邮件,语气专业但带点亲切感,提及上周的会议,并附上案例链接。要求:“生成10个标题,混合‘悬念型’和‘实用型’,比如‘99%的人不知道绿萝其实讨厌这件事’。
2025-06-06 12:00:16
945
原创 5.Pandas的实例操作
本文详细介绍了Python中pandas库的核心操作,主要包括:1. DataFrame基础操作:数据导入、行列查询/删除/添加、索引修改;2. 数据拼接:concat按行/列合并、merge实现各种表连接;3. 数据处理技巧:分组统计、透视表、字符串处理、正则表达式;4. 时间序列处理:日期转换、切片、计算、格式化;5. 数据清洗:缺失值处理、类型转换、规范化方法;6. 高级索引操作:多重索引查询、层级交换、行列转换。文章通过具体代码示例演示了pandas在数据分析和处理中的强大功能,涵盖数据全流程操作。
2025-06-06 01:07:44
1537
原创 4.Pandas运算及函数编程
本文围绕 Pandas 的核心操作展开,系统介绍了 DataFrame 的数据运算与处理技巧和函数式编程。首先讲解 DataFrame 的整体运算,涵盖算术运算、统计分析、函数应用(如 applymap()、apply())、排序及实战案例(数据标准化、时间序列计算)。接着阐述 DataFrame 间的对位运算,强调索引自动对齐机制及缺失值处理(如 add() 的 fill_value 参数)。随后对比了运算符与方法(如 add() 替代 +)的差异,突出方法在处理缺失值时的灵活性。
2025-06-05 20:07:10
755
原创 2.Numpy数组运算
高效数组操作:通过向量化运算替代 Python 循环,显著提升计算速度。支持多种数据类型(int/float/bool)和灵活的数组创建方式(zeros/ones/arange)。丰富的数学工具:内置三角函数、指数对数、线性代数等函数,覆盖科学计算全场景。灵活的索引机制:支持基本索引、切片、花式索引(整数 / 布尔数组),实现复杂数据筛选。广播机制:自动处理不同形状数组的运算,减少代码冗余。统计与条件工具:通过 函数、掩码操作高效处理数据筛选与替换,高效快捷。
2025-06-03 15:54:18
1172
原创 1.numpy数组的创建和读取保存
NumPy 通过高效的数据结构和算法,成为 Python 科学计算的基石。其核心价值在于简化大规模数值操作的代码复杂度并大幅提升计算性能,无论是数据分析师、机器学习工程师还是科研人员,掌握 NumPy 都是进阶的必经之路。例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
2025-06-02 17:52:19
1337
原创 Python+HTML+Deep seek搭建网站
本文介绍了一个基于Flask框架构建的端午节主题单页网站,采用MVC架构设计。系统通过JSON文件存储数据,实现了节日起源展示、端午节美食和活动管理功能。主要技术特点包括:RESTful API设计、自动数据初始化机制、完善的异常处理。应用包含前端展示页面和后端数据管理接口,支持内容的增改查操作。该方案简单易用,适合小型网站开发,完整展现了从数据存储到前端展示的全流程实现。
2025-06-02 14:49:20
420
原创 学习笔记:FME将excel分页界址点成果表中坐标还原shp图形
用FME将excel中分页的界址点成果表进行处理,转换成shp以上便是学习的全部内容,将一个数据拆分成两部分,坐标部分和属性部分。再分别进行处理,最后合并成一个完整的数据。
2025-06-01 16:43:56
354
原创 学习笔记:FME将txt界址点成果表中坐标还原shp图形
本文介绍了使用FME高效处理混合文本数据的流程。针对GIS数据中常见的txt转shp需求,传统方法处理混杂信息较麻烦,而FME通过可视化流程可显著提升效率。具体步骤包括:数据准备(识别有效数据)、FME处理(过滤无关信息、分割坐标数据、创建要素)和结果输出。FME优势在于直观的操作界面、强大的数据处理能力及批量处理支持,相比传统方法可节省50%以上时间,特别适用于大量复杂数据的转换任务。
2025-06-01 14:42:26
285
原创 学习笔记:FME制作界址点成果表(text、excel分页)制作
本文介绍了利用FME工具处理界址点数据的全流程,包括图形处理、坐标获取、邻近分析、文本与Excel格式输出等关键步骤。通过UniqueIdentifierGenerator、Orientor等模块实现多边形顶点坐标提取和排序,采用BoundingBoxReplacer和NeighborFinder进行左上角点定位。详细说明了TXT文件制作的数据聚合方法,以及Excel分页输出的参数设置技巧,包括页数计算、固定位置参数填充和距离写入。最终输出符合规范的界址点成果文件,展现FME在空间数据处理中的高效性与灵活性
2025-05-31 18:13:14
1277
原创 使用 Python 实现从 Excel 自动创建地理数据库GDB的高效方案 ---
提示:这里可以添加本文要记录的大概内容:在地理信息系统(GIS)项目中,创建要素类(Feature Class)是构建空间数据库的基础工作。当涉及大量图层时,手动创建每个要素类及其字段不仅繁琐,还容易出错。本节代码实现了从 Excel 配置文件自动创建要素类的核心功能,是整个地理数据库自动化构建系统的关键组成部分。提示:以下是本篇文章正文内容,下面案例可供参考"""初始化函数:param excel_path: Excel配置文件路径(含结构信息)
2025-05-30 15:54:29
581
【Python编程领域】常用Python开发工具汇总:提升编程效率的必备资源介绍
2025-06-09
【Python编程语言】Windows环境下Python3.6安装指南:视频教程分享与安装步骤说明
2025-06-08
用python创建数据库
2025-05-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人