【SCAU数据挖掘】数据挖掘期末总复习题库简答题及解析——上

1.K-Means

假定我们对A、B、C、D四个样品分别测量两个变量,得到的结果见下表。

样品

变量

X1X2

A

5

3

B

-1

1

C

1

-2

D

-3

-2

利用K-Means方法将以上的样品聚成两类。为了实施均值法(K-Means)聚类,首先将这些样品随意分成两类(A、B)和(C、D)。请详细给出每次聚类的中心坐标,计算样品到中心坐标的欧氏平方距离

解:

        第一步:按要求取K=2,为了实施均值法聚类,我们将这些样品随意分成两类(A、B)和(C、D),然后计算这两个聚类的中心坐标(见下表)。中心坐标是通过原始数据计算得来的。

聚类中心坐标一

聚类

中心坐标

X1X2

(A、B)

2

2

(C、D)

-1

-2

        第二步:计算某个样品到各类中心的欧氏平方距离,然后将该样品分配给最近的一类对于样品有变动的类,重新计算它们的中心坐标,为下一步聚类做准备。先计算A到两个类的平方距离:

d²(A,(AB))=(5-2)²+(3-2)²=10

d²(A,(CD))= (5 + 1)²+ (3 + 2)²= 61

由于A到(4、B)的距离小于到(C、D)的距离,因此A不用重新分配。计算B到两类的平方距离

d²(B,(AB))=(-1-2)²+(1-2)²=10

d²(B,(CD))=(-1 + 1)²+(1 + 2)²=9

由于B到(4、B)的距离大于到(C、D)的距离,因此B要分配给(C、D)类,得到新的聚类是(A)和(B、C、D)。更新中心坐标如下表所示。

 聚类中心坐标二

聚类

中心坐标

X1X2

(A)

5

3

(B、C、D)

-1

-1

        第三步:再次检查每个样品,以决定是否需要重新分类。计算各样品到各中心的距离平方,结果如下表所示。

样本到中心的距离平方

聚类

样本到中心的距离平方

A

B

C

D

(A)

0

40

41

89

(B、C、D)

52

4

5

5

到现在为止,每个样品都已经分配给距离中心最近的类,聚类过程到此结束。最终得到K=2的聚类结果是4独自成一类,B、C、D聚成一类。

2.试分析回归与分类的区别。

什么是回归?什么是分类?

分类是找出描述和区分数据类和概念的模型,以便使用模型预测类标号未知的对象类标号。

回归算法是监督型算法的一种,通过利用训练集数据来建立模型,再利用这个模型测试集中的数据进行处理。

区别:

分类和回归都可用于预测,分类的输出是离散的类别值,回归输出的是连续数值。


3.基于正态分布的离群点检测

假设某城市过去10年中7月份的平均温度按递增序排列,结果为24℃、28.9℃、28.9℃、29℃、29.1℃、29.1℃、29.2℃、29.2℃、29.3℃和29.4℃。假定平均温度服从正态分布,由两个参数决定:均值和标准差。假设数据分布在这个区间(以平均标准差)之外,该数据对象即为离群点。

(1)利用最大似然估计求均值和标准差。

均值(μ)的估计:

其中 n=10,xi​ 是每个样本的温度值。

将给定的温度值代入公式,得到:
μ=(24+2×28.9+29+2×29.1+2×29.2+29.3+29.4)/10=28.61

标准差(σ)的估计:
由于样本数量 n=10,我们使用样本标准差的无偏估计:

将给定的温度值和计算得到的均值代入公式,得到标准差 s 的值。

s=sqrt([(24-28.61)^2+(28.9-28.61)^2+...+(29.4-28.61)^2]/9)约等于1.63

(2)寻找上述10个对象中的所有离群点。

根据题目,离群点定义为数据对象落在平均值加减一个标准差之外的值。即,离群点不在区间 

(μ^​−σ^,μ^​+σ^)=(28.61−1.63,28.61+1.63)=(26.98,30.24) 内。

由于 μ=28.61 和 s≈1.63,我们可以发现所有给定的温度值中24℃不在区间 (26.98,30.24) 内。

4.K均值与K中心点

什么是K均值法,什么是K中心点法?

K均值法,每个簇用该簇中对象的均值来表示,为基于质心的的技术。

K中心点法,每个簇用接近簇中心的一个对象来表示,为基于代表对象的技术。

K均值和K中心点算法都可以进行有效的聚类。
(1)概述K均值和K中心点的优缺点。

优点

缺点

K均值法

聚类时间短。

能对大数据集进行高效划分

必须先指定聚类簇的个数。

只适用于数值属性聚类,对噪声和异常数据很敏感

不适合发现非凸面形状的簇。

K中心点法

对于非凸数据集也能较好聚类效果,且对于噪声点影响比较小

算法效率相对K-均值法较低

有可能出现簇中心点初始化不佳,导致聚类结果不埋想


(2)概述这两种方法与层次聚类方法相比较有何优缺点。

层次聚类方法(AGNES)对给定数据对象集进行层次的分解,使用距离矩阵作为聚类标准,不需要输入聚类数目K,但需要终止条件。

        优点是没有预先设定需要聚类的数量,能够处理复杂的数据结构,相对于K-均值、K-中心点更能反映出数据分布的全貌。
        缺点是AGNES算法计算量较大,在大规模数据集上效率较低,且聚类结果可能受到簇合并顺序的影响。

5.Apriori算法:通过限制候选产生发现频繁项集

数据表中有5个事物,设min_sup=60%,min_conf=80%,并有下表所示信息。

TID

购买的商品

T100

{M,O,N,K,E,Y}

T200

{D,O,N,K,E,Y}

T300

{M,A,K,E}

T400

{M,U,C,K,Y}

T500

{C,O,O,K,I,E}

请用Apriori算法找出频繁项集。

置信度(min_conf)是在找到频繁项集之后,用于生成关联规则时的一个参数,不用理会。

依题得min_sup=0.6*5=3,计算所有单项集的计数得到支持度计数大于等于3的频繁1项集:

m    3
o    3
n    2
k    5
e    4
y    3
d    1
a    1
u    1
c    2
i    1

频繁 1- 顶集: M,O,K,E,Y

然后根据频繁1-项集,找出支持度计数大于等于3的频繁2项集:

mo    1
mk    3
me    2
my    2
ok    3
oe    3
oy    2
ke    4
ky    3
ey    2

频繁 2- 项集: {M,K},{O,K},{O,E} ,{K,Y},{K,E}

再根据频繁2-项集,找出支持度技术大于等于3的频繁3-项集:

oke    3
key    2

频繁 3- 项集: {O,K,E}

故,用Apriori算法找出的频繁项集有频繁 1- 顶集: M,O,K,E,Y;  频繁 2- 项集: {M,K},{O,K},{O,E} ,{K,Y},{K,E};  频繁 3- 项集: {O,K,E}

  • 36
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值