最大似然估计就是不断调整,最终找到使得模型预测结果与实际数据最为接近的最佳参数
题目要求:
某医院为了研究导致手术切口感染的原因,收集了295例手术患者的情况。其中,手术时间小于或等于5h的有242例,感染者13例;手术时间大于5h的有53例,感染者7例。如表所示。试建立手术切口感染(v)关于手术时间(x)的逻辑回归模型。

介绍:
使用逻辑回归来建立一个模型,预测手术切口感染(v)关于手术时间(x)的概率。逻辑回归是一个分类算法,适用于预测二元结果(比如感染或不感染)

以下代码仅供参考:
代码一:
介绍:演示如何使用statsmodels库中的Logit类来构建逻辑回归模型,并使用该模型进行参数估计和预测。
1. statsmodels.api as sm:导入statsmodels库,该库提供了许多统计模型,包括线性模型、广义线性模型、鲁棒线性模型、离散选择模型和时间序列分析。
2. 构造数据:创建一个字典data,其中包含两个键:'手术时间'和'感染'。'手术时间'的值为一
逻辑回归模型在手术切口感染预测中的应用与参数估计,

最低0.47元/天 解锁文章
2919

被折叠的 条评论
为什么被折叠?



