【AI大模型】应用开发基础

前言

1、了解大模型能做什么
2、整体了解大模型应用开发技术栈
3、浅尝OpenAI API的调用

AI全栈工程师:懂AI、懂编程、懂业务的超级个体,会是AGI(Artificial General Intelligence 通用人工智能)时代最重要的人。

知识体系

AI学习方法论

从三个方面学习:原理实践认知 三类
1、不懂原理就不会举一反三,走不了太远。
2、不懂实战就只能纸上谈兵,做事不落地。
3、认知不高就无法做对决策,天花板太低。

如果能三者兼备,是最好的。但不同岗位角色可以有不同的取舍。比如:
1、老板更多关注认知,但如果懂原理,能形成更多的认知
2、程序员更多关注实战,但原理和认知是地基和天花板
3、产品经理更多关注认知,但应该也懂原理,并了解一些实战
4、市场、运营和销售需要关注认知,并了解一些原理

说明:在剧烈变革的时代,千万别只拿代码当干货!更深的东西,未必是有用的。

大模型

  • 什么是AI?基于机器学习、神经网络的是AI;基于规则、搜索的不是AI

  • 大模型:全称大语言模型(Large Language Model,缩写:LLM)

    常用大模型

大模型常见用法

1、按格式输出:例如,从一段话中,提取姓名、地址、电话等结构化信息。

2、分类:例如,根据新闻标题,对新闻进行分类

3、聚类:把一堆句子,按意思相近度进行分组

4、更多用法

  • 持续互动:多轮互动问答、角色扮演等
  • 舆情分析:从公司产品的评论中,分析哪些功能/元素是用户讨论最多的,评价
    是正向还是负向
  • 坐席质检:检查客服/销售人员与用户的对话记录,判断是否有争吵、辱骂、不
    当言论,话术是否符合标准
  • 故障解释:根据系统报错信息,给出方便非技术人员阅读的故障说明
  • 零代码开发/运维:自动规划任务,生成指令,自动执行
  • 生成业务逻辑:自定义一套业务描述语言(DSL),直接让ChatGPT写业务逻
    辑代码

思考:你的业务中,有哪些问题可以用AI解决?

5、可能一切问题,都能解决,所以是AGI

划重点:
1.把大模型看做是一个函数,给输入,生成输出
2.任何业务问题,都可以用语言描述,成为大模型的输入,就能生成业务问题
的结果
3.实际工作中,通常需要将业务任务拆解为若干个子任务,分别解决。理解业
务本质,对拆解任务有很大帮助!

  • 一般在使用大模型时,不是直接把一个比较大的任务丢给大模型,而是把任务进行拆解,拆解成若干个子任务逐个解决,得到结果再组合,这样效果会更好。
  • agent:就是用AI来完成任务的拆解

大模型的工作原理

1、通俗原理
大模型是怎么生成结果的?其实,它就是根据上文,猜下一个词(的概率)…… 这个算法叫 transformer

如:The cat sat 后面出现的词可能是:at(0.1) / in(0.1) / on(0.8)

AI大模型的核心原理:基于概率生成下一个token(选择下一个概率高的token),token拼token,最后就拼成了一整句话。

OpenAI的接口名就叫completion,也证明了其只会生成的本质。下面用程序演示生成下一个字。你可以自己修改prompt试试。还可以使用相同的prompt运行多次。

# 这是一个Python调用ChatGPT的代码

# 1.引入必须的包
from openai import OpenAI
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值