347. 前 K 个高频元素(medium) -力扣(leetCode)JS小根堆

该文章介绍了一种利用小根堆解决寻找数组中出现频率前k高的元素的方法。首先通过Map统计元素频率,然后用小根堆存储频率及对应元素,堆大小不超过k。当堆满时,移除堆顶元素,直至得到前k个高频元素。算法时间复杂度优于O(nlogn)。
摘要由CSDN通过智能技术生成

⚡️347. 前 K 个高频元素⚡️
给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:
输入: nums = [1], k = 1
输出: [1]

提示:
1 <= nums.length <= 105
k 的取值范围是 [1, 数组中不相同的元素的个数]
题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的

进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。

⚡️分析⚡️

题目要求返回其中出现频率前 k 高的元素,因此可用map结构配合小根堆进行解决。
先用map存储数组中各数字出现的次数,再利用出现的次数,即键值对中的key,进行小根堆排序,当数量大于k个,就将小根堆堆顶元素移除(移除的必定是出现次数最少的),直到符合题意

代码如下:

class MinHeap {
    constructor(){
        this.heap = [];
    }

    fatherIndex(index){
        return (index-1) >> 1;
    }

    swap(a,b){
        const res = this.heap[a];
        this.heap[a] = this.heap[b];
        this.heap[b] = res;
    }

    shiftup(index){
        if(index == 0)return;
        const father = this.fatherIndex(index);
        if(this.heap[father].value > this.heap[index].value){
            this.swap(father , index);
            this.shiftup(father);
        }
    }

    insert(value){
        this.heap.push(value);
        this.shiftup(this.heap.length-1);
    }

    shiftdown(index){
        if(index >= this.heap.length)return;
        const left = index*2+1;
        const right = index*2+2;
        if(this.heap[left] && this.heap[index].value > this.heap[left].value){
            this.swap(index,left);
            this.shiftdown(left);
        }
        if(this.heap[right] && this.heap[index].value > this.heap[right].value){
            this.swap(index,right);
            this.shiftdown(right);
        }
    }

    pop(){
        this.heap[0] =  this.heap.pop();
        this.shiftdown(0);
    }

    Length(){
        return this.heap.length;
    }

    popout(){
        return this.heap[0];
    }
}

/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number[]}
 */
var topKFrequent = function(nums, k) {
    const map = new Map();
    nums.forEach(n => {
        map.set(n , map.has(n) ? map.get(n) + 1 : 1);
    })
    const h = new MinHeap();
    map.forEach((value,key) => {
        h.insert({value,key});
        if(h.Length() > k){
            h.pop();
        }
    });
    return h.heap.map(n => n.key);
};

算法效率如图:
在这里插入图片描述




觉得该篇文章有用的请不要忘记忘记点击右下角的大拇指~

欢迎大家关注我的公众号:Smooth前端成长记录
公众号正在努力更新CSDN博客内容,想方便阅读博客的C友可以来关注我的公众号以便获得更优良的阅读体验~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值