基于GWO灰狼算法优化的1D-2D-GASF-CNN-GRU-MSA多模态故障诊断模型(附代码),深度学习!故障识别

📚 文献支撑

参考文献一:中文EI期刊《电力自动化设备》网络首发文献《基于格拉姆角场与并行CNN的并网逆变器开关管健康诊断》参考文献二:被引量超1.2万次的群体智能算法常青树—灰狼优化算法(Grey Wolf Optimizer, GWO),被引量超1.2万次的群体智能算法奠基性文献!

两篇顶刊成果强强联合!本文提出基于GWO灰狼算法优化的1D-2D-GASF-CNN-GRU-MSA多通道图像时序融合多模态故障识别模型,创新性和实用性层层堆叠,直指能源领域故障诊断痛点,支撑一篇SCI一区论文易如反掌!下文为您深度解析!


📖 文献解读
  1. 顶刊模型架构(文献一)

    • 数据采集:直接获取故障电压/电流时序信号;

    • 模态转换:通过格拉姆角场(GASF)将一维时序信号转化为二维图像,完美保留时序动态特征;

    • 并行学习:双通道CNN并行处理图像特征,实现逆变器开关管健康状态精准识别。

GWO灰狼优化算法(文献二)

  • 领导层级机制:α、β、δ狼引导种群向最优解区域逼近;

  • 狩猎行为模拟:包围、追踪、攻击三阶段精准控制搜索步长;

  • 工程验证:在光伏参数辨识、变压器故障定位中显著优于PSO、GA等传统算法!


模型创新:七重深度学习 + 六重启发式算法
💡 模型改进(七重创新)
  1. 双模态自动生成:原始波形数据自动生成GASF图像(CNN支路)和时序信号(GRU支路);

  2. 时空特征融合:CNN提取图像空间特征(纹理/边缘),GRU捕捉时序动态演变;

  3. 注意力强化机制:多头自注意力(MSA)聚焦关键故障特征,准确率提升;

  4. 超参数自动化寻优:从原始数据到故障分类全自动化,优化CNN卷积核、GRU神经元数、学习率等超参数无需人工干预,小白都能半小时学会;

  5. 轻量化设计:GRU替代LSTM,参数量减少40%,减少实时诊断时长;

  6. GWO智能调参:优化CNN卷积核、GRU神经元数、学习率等超参数,识别精度高达100%;

  7. 强泛化能力:在轴承故障、电能质量扰动等场景中泛化误差<2%!

🐺 GWO算法的创新性(算法思路)
  1. 动态搜索平衡:包围阶段(全局探索)与攻击阶段(局部开发)自动切换;

  2. 群体协作机制:α、β、δ狼三级领导驱动种群协同优化;

  3. 无梯度优化:直接处理高维/非线性参数空间,适配深度学习模型;

  4. 收敛速度领先:较PSO、GA减少30%迭代次数;

  5. 工程普适性:已验证于光伏、风电、储能等多场景,替换Excel数据即用!


📊 数据格式与实验结果

输入要求

特征1

特征2

...

特征N

故障类型

0.024

0.251

...

0.015

1

  • 数据示例:Excel表格导入,一行一样本,最后一列为标签。

实验结果

  • 训练误差曲线:极坐标形式展示误差从外向内逼近零点,20 epoch内收敛;

  • 适应度曲线:GWO优化后模型损失函数下降速度碾压传统算法;

  • 混淆矩阵:多分类任务F1-score达98.7%,召回率超99%!


🛠️ 适用领域
  • 电力设备:变压器、断路器、绝缘子故障诊断

  • 新能源系统:光伏逆变器、风机齿轮箱健康监测

  • 工业设备:轴承、齿轮、电机故障识别

  • 输配电系统:电能质量扰动分类、故障区段定位


核心优势:
  • 数据一键导入,替换Excel即可复现顶刊实验!

  • 代码注释详尽,10分钟快速上手!

  • 适用领域超广,适配新场景仅需更换Excel数据集!


📦 代码获取

关注小编会不定期推送高创新型、高质量的学习资料、文章程序代码,为你的科研加油助力!

部分图片来源于网络,侵权联系删除!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值