本科毕设需体现学生对专业知识的综合运用能力,该程序一键实现全流程代码与可视化验证,适合作为风电预测光伏功率预测的典型案例,但有点大材小用了。
硕士大论文/小论文需体现理论创新性、方法科学性及工程实用性,该程序的数据分层策略、混合架构深度学习模型、注意力机制等作为小论文的强有力创新点支撑。
【预测原理】
风电功率主要受风速主导,呈立方关系变化。切入/切出风速限制发电区间,风向影响机组效率和尾流效应,空气密度(气温/气压)修正功率曲线,阵风强度则增加短时预测难度。气象因素的综合作用导致风电呈现间歇性与波动性特征。
【预测时间尺度】
超短期(分钟-4小时)
短期(数小时-3天)
中期(数天-数周)
长期(月-年)
01程序摘要 | Abstract
风电功率预测对电力系统安全与经济运行至关重要,但其精度受气象波动复杂性和时序特征多尺度耦合的严重制约。本文提出一种融合数据分层与混合深度学习框架的风电功率预测方法,实现了气象模式辨识-时空特征联合建模-预测不确定性分析的全流程创新。首先,基于K-means聚类与主成分分析(PCA)构建风电功率日波动模式分群模型,通过三维投影与标准差带可视化验证了k类典型气象模式的时空可分性。其次,设计残差门控循环单元-多头自注意力(ResGRU-MSA)混合神经网络:利用双层GRU捕获风速-功率传递的惯性特性,引入跨层残差连接缓解复杂地形下的梯度消失问题,嵌入多头自注意力机制聚焦关键气象事件(如阵风锋过境),极大降低模型在短期24小时预测中的误差。绘制出动态双轴训练监控曲线与核密度误差分布图,可视化展示模型结果。基于亚洲南部(伊斯兰堡)某风电场的实测数据表明,该方法相较传统模型的预测误差方差降低34.2%,为高波动性气候区的风电功率预测提供了可解释、可落地的技术参考。适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。程序一键运行,无需修改代码。
02程序创新性 | Detailed Information
针对上述问题,本文提出一种数据驱动与机理融合的风电功率预测框架,其创新性体现在三方面:
①数据分层策略:通过K-means聚类识别功率波动的典型气象模式,结合三维PCA投影实现模式可分性验证,证明不同类别的功率曲线在低维空间显著分离,构建"分群-专模"预测架构以降低跨模态干扰。
②混合神经网络创新:残差门控机制与时空注意力融合,在传统GRU基础上引入 跨层残差连接,缓解深度网络退化。地形适应能力:在复杂山地风场中,跃层连接使模型对突发风向变化的响应速度提升。
③多头自注意力机制(Multi-Head Self-Attention,MSA)增强:MSA机制使阵风过境时段的特征权重提升,不同Head分别关注小时级波动(如阵风)和日周期趋势(如气温)。
④预测过程透明化:提供各个步骤的运行结果图,展示训练曲线、样本密度估计等。提供MAPE、RMSE、MAE、R²等计算结果展示
通过 "数据模态解耦-残差时空建模-可视化决策支持" 的技术闭环,解决了复杂气候区风电功率预测的三大核心难题:
多模态波动干扰 → K-means分群 + PCA可解释性验证
突发气象事件响应滞后 → ResGRU-MSA混合架构预测
风险评估 → 概率分布+误差分布 + 动态训练曲线监控
图 Kmeans+PCA+ResNet+GRU+注意力机制的预测框架
03数据集及格式 | Data
2021年全年亚洲南部(伊斯兰堡)某风电场数据,
2021/1/1 0:00:00至2021/12/31 23:00:00,每天24小时;
特征:①温度_2m ②相对湿度_2m ③露点_2m ④风速_10m ⑤风速_100m ⑥风向_10m ⑦风向_100m ⑧阵风_10m,数据由Excel导入,直接可以运行。
04程序结果 | Conclusions
Kmeans聚类+PCA验证结果:
相似日分析:
统计各相似日样本数及比例,自动导出聚类结果至Excel表格:
深度学习预测结果:
部分代码:
%% 环境初始化模块
warning off % 关闭所有警告提示,避免干扰输出
close all % 关闭所有图形窗口,清空绘图环境
clear % 清空工作区变量,防止旧数据干扰
clc % 清空命令窗口内容,保持输出区域整洁
rng('default') % 重置随机数生成器为默认状态,确保结果可重复
%% --------------------- 数据加载与解析模块--------------------------------------
% 读取风电数据集(使用第三输出参数获取原始单元格数据)
[~, ~, rawDataCell] = xlsread('南亚某风电场数据集(伊斯兰堡).xlsx');
% 转换原始数据为表格结构,首行作为列标题
processedDataTable = cell2table(rawDataCell(2:end,:), 'VariableNames', rawDataCell(1,:));
%% 数据预处理模块
windPowerValues = processedDataTable{:,end}; % 提取最后一列风电功率数值
dailyPowerMatrix = reshape(windPowerValues, 24, 365)'; % 重构为365天x24小时的二维矩阵
normalizedPowerData = zscore(dailyPowerMatrix, [], 2); % 行标准化(Z-Score归一化)
%% 聚类分析模块
numClusters = 3; % 设定聚类分析的分组数量
% 执行K-means聚类算法(返回聚类索引和质心坐标)
[clusterIndices, clusterCentroids] = kmeans(normalizedPowerData, numClusters);
关注小编:《学术代码》/《创新优化及预测代码》获取代码