最新!SCI一区顶尖优化算法,复制粘贴一步到位,优化效率翻倍!思维创新策略(TIS)的新机制,用于改进元启发式算法

适用平台:Matlab2021及以上

一、摘要

2025年5月即将发表于SCI一区顶级期刊《Applied Soft Computing》提出了一种优化算法一键改进方法!!!论文提出了一种名为思维创新策略(TIS)的新机制,用于改进元启发式算法。TIS的灵感来源于人类的创新思维过程,通过模拟个体的知识深度和想象力来平衡算法的探索与开发能力。在57个工程问题和IEEE CEC2020基准测试上验证了TIS的有效性,显著提升了多种算法的性能。创新性极强非常简单且,目前还未有利用该改进策略的论文,赶紧码住!

二、创新点


①知识深度模型(DOK Model)• DOK1 表示常规经验知识,由常数    和进化代数占比的平方根组成,反映算法早期快速积累经验。

• DOK2 为创新知识,通过    放大迭代次数的影响,后期主导搜索方向。

• 总知识深度    是两者的加权和,实现经验继承与创新突破的平衡。

• 通俗比喻:

好比学生解题:DOK1是课本知识(随时间稳步增长),DOK2是竞赛经验(后期爆发式提升),两者结合形成解题能力,多策略结合!


②想象力驱动算子(IM Operator)

• IE 为信息事件库中的优质解,    引入随机扰动。•Π是放大系数,确保扰动幅度与问题规模适配。

主要作用:在已有优质解(IE)基础上,通过随机扰动(rand)探索周边区域,类似科学家在已知方案附近尝试改进。


③思维跃迁方程(Innovation Equation)

•    函数将输入映射到    ,增强搜索方向多样性。

•    表示基于知识深度对当前位置的修正,经验越深修正越小。

•    引导向历史优质解方向搜索。

类似导航系统:    提供方向探索(如尝试新路径),    是已知最优路线,    调节两者权重(新手多探索,老手多依赖经验)。


④信息事件更新机制(IE Update)

该机制通过动态保留历史优质解来指导搜索方向,其更新规则为:

动态保留历代最优解,形成经验库,指导后续搜索方向,类似棋手记忆经典棋局(IE),遇到相似局面时快速调用,但遇到新棋局时更新记忆库。


⑤自适应越界处理(Boundary Control)

镜像反弹策略:若    ,则修正为:避免直接截断导致的梯度信息损失,保持解的空间连续性。 类似光线射到镜面反射,既能保证不越界,又能保留运动方向信息。


⑥约束协同处理(Constraint Handling)自适应惩罚函数:其中  动态调整惩罚系数    ,早期允许轻度违约束(    较小),后期严格惩罚(    增大)。类似"先粗筛后精修":先粗略探索大范围,后期聚焦可行域。


关键改进总结表

改进模块

核心公式

学术贡献

工程意义

知识深度模型

公式 (1)-(3)

量化经验与创新的动态交互

平衡算法探索与开发

想象力驱动

公式 (4)

引入可控随机扰动

避免早熟收敛

思维跃迁方程

公式 (5)

非线性映射增强搜索多样性

提升高维问题求解效率

自适应约束处理

动态惩罚系数  

无需人工设置惩罚权重

自动适配复杂约束场景

镜像越界修正

反弹公式

保持解空间连续性

提高边界附近搜索精度


上述方法使得TIS既保留了数学严谨性(如DOK模型的可微性证明),又通过动态机制(如IE更新)适配工程实际需求,实用性非常强,真正做到即插即用!

三、程序结果

四、 程序获取

关注公众号,私信发送:TIS  免费获取

往期推荐

超高创新性!看完直接写论文!基于1D-2D-DCGAN-ResNet-MSA故障识别程序 (附源码) 直接运行!

“小白靠这个程序,写人生中的第一篇SCI一区!”

终极指南︱风电功率预测:10分钟学会Kmeans+PCA+ResNet+GRU+注意力机制,毕业设计和论文一次通关!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值