自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 用于约束多目标优化的牵引种群辅助双种群和两阶段进化算法(DPTPEA)

如果辅助种群的可行率为0,说明CPF和UPF相隔较远,辅助种群已经无法对主种群提供帮助了,面对这种复杂的可行域,主种群很有可能陷入了局部最优,所以为了使主种群跳出局部最优,随机选择Nref个参考点,Nref的大小取决于可行率的大小,然后在决策空间中计算参考点到最小点和最大点的距离,用来决定参考点到最小点/最大点的连线上生成解的个数。首先会通过判断辅助种群的可行率,可行率的大小决定辅助种群生成子代1的大小。主种群和辅助种群共享子代,然后主种群采用CDP原则选择筛选种群,辅助种群采用帕累托支配原则筛选种群。

2025-03-24 15:32:40 387

原创 现存的约束多目标进化算法总结

1.基于罚函数的方法适应度函数定义:f(x)为目标函数值,P(x)是惩罚项,f′(x)为计算后的适应度值核心思想:这种方法主要是基于约束违反值来构建惩罚项,通过添加惩罚项到目标函数中,这个约束优化问题被转成了一个无约束问题。可以简单分为三类:静态罚函数方法、动态罚函数方法、自适应罚函数方法。该方法的核心在于惩罚系数的设定,在算法的效率中惩罚系数扮演了决定性的作用。优点:这些方法简单易行,灵活且应用广泛。缺点:惩罚系数难以调整,当处理更复杂的问题时,算法的性能不够优秀。1.1.静态

2025-01-10 20:46:28 1399

原创 CMOPs 约束多目标问题基础知识

其中 S 是决策空间,x 是在 S 中具有 D 维度的决策向量,决策向量可以是连续的或者离散的。F(x) 是目标向量,它包含需要解决的 m 个目标。gj (x) ≤ 0 表示第 j 个不等式约束。hj (x) = 0 是第 (j - l) 个等式约束。l 和 (k - l) 分别表示不等式和等式约束的数量。对于一个决策向量x,它在第j个约束的约束违反值被定义为CVj(x),其中δ是一个正的容差值,用来放宽等式约束。通过将每个约束违反值相加,可以得到总的约束违反值CV(x)。

2025-01-07 21:19:41 709

原创 进化约束多目标优化:可扩展的约束基准问题和算法(IMTCMO)

本文主要介绍算法IMTCMO,文献中提出的SDC基准问题仅做简要介绍,详细了解请参考文章末尾所给的文献链接。

2024-12-13 12:03:52 1445 1

原创 约束多目标优化中Pareto前沿关系研究总结

这其实就是一个约束逐渐增加的过程,不断地满足所有约束条件直到寻找到可行解。传统的方法一般是直接计算所有约束来不断的优化找到可行解,这会浪费约束之间有用的信息。并且很容易就陷入局部最优,过早收敛导致多样性很差。所以逐步探索所有约束既可以有效利用约束之间的信息也能增强种群的多样性。对于图b和图c的关系类型识别还有待研究。

2024-12-08 17:27:53 1398 1

原创 一种使用新合作机制解决具有多约束的多目标问题的多种群进化算法(MCCMO)

对于这篇论文,三个创新点。1.将种群数量划分为C+2个,充分利用了不同约束之间的有效信息,但是种群数量的增加会消耗更多的计算资源,计算的时间也会大大增加,为此提出2.ADD策略来控制种群的激活和休眠,在进化过程中让一些满足条件即帮助作用不大的种群进行休眠,一些帮助作用大的种群进行激活,有效的节省计算资源的消耗,除此之外利用3.COD策略来控制SCP种群的合并。使得一些作用不大的SCP种群进行合并。来逐渐满足所有约束的同时节省计算资源的消耗。最终找到收敛性好的可行解,并且也能很好的平衡种群的多样性。

2024-12-06 21:13:19 1304 5

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除