二叉树
1.树型结构
1.1什么是树?
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
- 子树是不相交的;
- 除了根结点外,每个结点有且仅有一个父节点;
- 一棵N个结点的树有N-1条边。
- 结点的度: 一个结点含有子树的个数称为该节点的度。A的度为6
- 树的度: 所有结点度的最大值称为树的度。树的度为6
- 叶子结点或终端结点: 度为0的结点称为叶子结点。B,C,H,I,P,Q,K,L,M,N为叶子结点
- 双亲结点或父结点: 若一个结点含有子节点,则这个结点称为其子结点的父节点。A是B的父结点
- 孩子结点或子结点: 一个结点含有的子树的根节点称为该节点的子结点。B是A的孩子结点
- 根结点: 一棵树中,没有双亲结点的结点。A为根结点
- 结点的层次: 从根开始定义起,根为第一层,根的子结点为第2层,以此类推。
- 树的高度或深度: 树中结点的最大层次。树的高度为4
这里的深度注意
:
1.2 树的表示形式
树的表示形式其实有很多种,如:双亲表示法,孩子表示法,孩子双亲表示法,孩子兄弟表示法等等。这里我们简单的了解其中最常用的孩子兄弟表示法。
class Node {
int value;//树中存储的数据
Node firstChild;//第一个孩子引用
Node nextBrother;//下一个兄弟引用
2. 二叉树(重点)
2.1 概念
一棵二叉树是结点的一个有限集合,该集合:
1.或者为空
2.或者是由一个根结点加上两棵别称为左子树和右子树的二叉树组成
注意:
- 二叉树的每个结点的度<=2
- 根结点的左子树和右子树也必须是一棵二叉树
- 二叉树的子树有左右之分,次序不能颠倒
对于任意的二叉树都是由以下几种情况复合而成的:
2.2 满二叉树和完全二叉树
(1)满二叉树
二叉树中除了叶子结点,每个结点的度都为2,则此二叉树称为满二叉树。也就是说,如果一棵二叉树的层数为k,且结点总数是(2^k)-1,则它就是满二叉树。
(2)完全二叉树
对于深度为k的,有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从0-n-1的结点一一对应时称之为完全二叉树。
满二叉树是一种特殊的完全二叉树
这个就不是完全二叉树:没有一一对应
2.3 二叉树的性质
-
若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)(i>0)个结点。
-
若规定只有根结点的二叉树的深度为1,则**深度为k的二叉树的最大结点数是2k-1(k>=0)**。如上图,深度为4,一共有24-1=15个结点。
-
对任何一棵二叉树,如果其叶结点个数为n0,度为2的非叶结点个数为n2,则有n0=n2+1。
(1) 一棵二叉树假设有N个结点,假设度为0的结点有n0个,度为1的结点有n1个,度为2的结点有n2个。即可以推出N=n0+n1+n2
(2)一棵二叉树总共有多少条边?N-1=0+n1+2n2
根据第一条和第二条,进行结合:n0+n1+n2 = n1+2n2+1
即n0=n2+1 度为0的节点个数比度为2的结点多1个。
例:1.某二叉树共有399个结点,其中有199个度为2的结点,则该二叉树中的叶子结点数为(
200
)
n0=n2+1
2.在具有2n个结点的完全二叉树中,叶子结点个数为(n
)
3. 一个具有767个结点的完全二叉树,其叶子结点个数为(384
)
- 具有n个结点的完全二叉树的深度k为log
2
(n+1)上取整。
2^k-1=n 即k=log2(n+1)
例:一棵完全二叉树的节点数为531个,那么这棵树的高度为(
10
)
2^10=1024
2^9=512
- 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子.
若21+2<n,右孩子序号:2i+2,否则无右孩子
2.4 二叉树的存储方式
二叉树的存储方式有顺序存储和类似于链表的链式存储
二叉树的类似于链式存储是,一个一个节点引用起来的
(1)孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
(2)孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点
}
2.5 二叉树的基本操作
2.5.1 遍历二叉树
(1)前序遍历:根–>左子树–>右子树
(2)中序遍历:左子树–>根–>右子树
(3)后序遍历:左子树–>右子树–>根
(4)层序遍历:从左到右,遍历每一层
1.某完全二叉树按层次输出(同一层从左到右)的序列为ABCDEFGH。该完全二叉树的前序序列为(
A
)
A: ABDHECFG
B: ABCDEFGH
C: HDBEAFCG
D: HDEBFGCA
2.二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为(A
)
A:E
B:F
C:G
D: H
3.设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为(D
)
A: adbce
B: decab
C: debac
D: abcde
4.某二叉树的后序遍历序列与中序遍历序列相同,均为ABCDEF,则按层次输出(同一层从左到右)的序列为(A
)
A: FEDCBA
B: CBAFED
C: DEFCBA
D: ABCDEF