写在前头:本人只是一名普通的大二学生,这个学期刚学习《信号与系统》(郑君里第三版),对于书本中突然出现的“奇异函数平衡原理/奇异函数系数平衡”这个知识点,一直搞不清楚(书上也没有特别的详细说明,网上查的资料也不能很好的帮助我理解这个问题)!然后趁着国庆假期空余时间,我对这个问题重新进行了思考,发现自己好像突然顿悟了!就想着写出来给大家分享一下,如有理解不对(出现本质上的问题),请谅解!
接下来就让我们开始分析吧!(整个过程都是针对解题过程来讲的--如有不能接受的孩子就快溜~)
- 首先给出书本上的一个例题,如图:
首先大家要接受(明确)几点:
- 方程两边对应项的系数一定是相等的!(我一开始没接受过来,www,害我纠结了好久);
- “δ(t),u(t)是关于t的函数”这一点一定要牢记于心!因为我们现在关注的是奇异函数;
- 由于我们现在接触了冲激信号、冲激偶信号,所以我们不能仅仅只把关注点放在t>0+这部分,而要延伸到t>0-这个时间段(因为在0-到0+这个时间段,由于冲激函数的存在,会引起电路一些变量,如电容电压、电感电流的突变(是不是有点颠覆认知了,详细可以看书本P23页));
- 由于第3点的存在,所以我们写出的方程的解所涵盖的时间范围实际上是0-~+无穷大(貌似书上都没有明确点出这一点,包括我们上课的老师也没有强调这一点,但是大家看下去就会发现肯定是这样的!----至少我认为);
- 我们目前讨论的是冲激响应/阶跃响应,最最最重要的一点就是,这是在电路零状态下的响应!!!
- 冲激信号与阶跃信号是导数和积分的关系。
正片开始!(此时激励已给出)
一.列写出系统的微分方程(一般而言应该都是常系数线性微分方程)
二.解方程:
- 针对我所列写的微分方程,既然要求解它,那我肯定得明确一点——我最终应该得到的解带入方程中,方程的两端对应项的系数一定是相等的。既然这样,那就有一个原则:方程左边响应的最高阶项应该对应于方程右边激励的最高阶项,如下图:
对于上面这个简单的方程,一定是响应的一阶导数对应δ(t)(或者说响应的一阶导数中一定有δ(t)这一项),否则假如我的响应r(t)对应δ(t),那么响应的一阶导数中就会有冲激偶信号,那么此时方程两端一定是不平衡的!
明白这一点后,那我们就开始设方程的解,因为我现在知道了r(t)的导数中一定有δ(t)项(一定是从最高阶开始设,否则当我们得到r(t)后,带回方程,会发现有一些项消不掉,这个地方有点难说明,大家如果能够理解就最好了,可以看下面的图:)
这个时候就会产生分歧:
分歧1.如果我希望我设的解能够涵盖0-到+无穷大的范围,那么我必须要不停的设我的响应的最高阶项,如图:
阶段一:
具体写成:
补充:为什么δ(t)的系数为a,而不是t的表达式?
这是由于冲激函数的抽样性得到的(具体看书本P21),由于冲激函数在0以外的任意时刻都为0,所以有关t的表达式就变成了一个常数a,具体大家可以用不同的时间t去带,可以说明是对的
接下来我就开始算我的解,分为0-到0+,0+到+无穷大两个部分(因为我这个全解一定从0-到+无穷大都是满足方程的):
首先从0-到0+,由于积分的连续性(也即u(t)前面的t的表达式必定是个从0-到+无穷大的连续函数)此时它就是一个常数c,如下图:
然后我们就可以将该解r(t)=cu(t)重新带入方程,然后把c解出来(可以类比到各种类似的方程),如果r(t)中还带有aδ(t),那么此时也可以将a解出来。
到此为止,我就把解中t的表达式在0处的值算出来了
阶段二:
分析t从0+到+无穷大时,解的形式:
此时由于t>0.那么我的方程就简化成了
这个时候就特别棒了!这不就是算方程的齐次解嘛!?先列些处特征方程,然后写出解的形式
(如果此时方程右边带有常数,也即由阶跃信号遗留下来的直流信号,那就按照正常的经典法求解方程即可,求出方程的齐次解+特解,合在一起就是t的表达式了)
特别注意:此时的解是t的表达式,不是真正意义上的解!
阶段三:
我已经得到了t的表达式(解的形式),和t的表达式在0处的值(即初始条件),所以带入表达式,我就可以把毒瘤(t的真正意义上的表达式解出来了!)
至此,我的解就完成啦!完美~
接下来看分歧2
分歧2:由于我已经知道当t>0时,方程的解是怎么样的了(具体可以参考上面的说明,此时解出来的是t的表达式),所以我就干脆不关注0+到+无穷大的解,只关注0-到0+的情况:
阶段一:
设方程的解为:
补充:
- 因为此时我只关注0-到0+时刻,所有对于其他项,当t=0时,带入方程,全部都变成0了;
- 由于此时我只关注0-到0+时刻,并不涵盖0+到+无穷大,此时u(t)只代表0-到0+的一个跳变,因此我写成Δu(t)(有些题目的解题过程就是写成Δ的,不知道他们是不是这样理解的)
阶段二:
然后我就将该解带入方程中,由于方程两边对应系数相等,可以解出此处的a;
此处a的值即代表我响应r(t)产生的一个跳变量,大小为a。
阶段三:
(再次强调,由于我们算的是零状态响应,所以这个跳变值a就是当t=0+到+无穷大时,解的初始条件值,即r(0+)=a)
联立此处的初始条件r(0+)=a与t>0时根据经典法求得的解r(t),即可解出最终的解。
注意:由于这个解是t>0时刻的解,所以实际上解题时写作:r(t)u(t),用来确定解的实际范围;
补充:
如何理解最终解中带有的δ(t)?
个人认为:由于我们最终的解考虑的是0-到+无穷大,所以这个由0-到0+之间产生的解一定是要加上去了,至于它代表什么物理意义:不知道大家有没有做过电路实验,大家如果做过应该有在示波器上看到那种瞬间产生的高脉冲,我个人认为这里的 δ(t)可以理解成为这种脉冲,这种脉冲就是由于激励加在系统上产生的,并不用去在意。(就相当于你给我这个激励,我就自发产生这种响应,这种算是一个必然的结果,大家可以就这样去接受,没有必要去强行想去知道这个结果)
为什么Δu(t)不见了?
Δu(t)的作用就是在0-到0+期间产生一个跳变(或者理解成为它只有在0+之后才有作用),用于连接0-到0+的解与0+到+无穷大的解,它的作用效果在我们求0+到+无穷大的解中的未知系数时就体现出来了,而也正是如此,所以我在0+到+无穷大的解的后面要加上一个u(t),用于说明作用的范围。
最后的补充:
1.对于系统自身带有储能的情况,只需要将其分为零状态响应或零输入响应求解即可,其中求解请输入响应:利用经典法求解(齐次解);求零状态响应:就是整篇文章描述下来的这种解法,在后续的课程中还有卷积法等等(个人还没学~)
2.如何理解冲激信号:在求解零状态响应的过程中,实际上冲激信号的输入,就是给系统储存能量,即上文里描述的0-到0+过程中,响应发生的跳变值。经过冲激信号的作用,我的初始条件(0+时刻)就不为0了
3.总的求解过程的概述:
- 列写系统微分方程;
- 带入激励;
- 由方程两边最高阶相等,设出解(具体分为两种,即上述中的分歧1与分歧2);
- 求解出相关的常数项,以及初始条件(0+)
- 最终联立写出方程的解
文字叙述起来实在是太难了!大家如果看了之后对这种解法的整个流程有了更好的认识,那就是最棒的了!如果没有认识到什么,就当看了一篇毫无营养的文章吧!
(其实写这篇文章的原因就是想让自己在期末复习的时候能高效一点)
拜拜~