survival | 生存分析(4):Cox比例风险模型

本篇推文来介绍Cox比例风险模型(Cox proportional hazards model),简称为Cox模型。

目录如下:

  • 1 Cox模型形式

    • 1.1 模型的数学形式

    • 1.2 模型说明

    • 1.3 模型的代码形式

  • 2 常规Cox模型

    • 2.1 单类型单事件

    • 2.2 单类型多事件

    • 2.3 多类型单事件

  • 3 多状态Cox模型

    • 3.1 模型示例一

    • 3.2 模型示例二

1 Cox模型形式

1.1 模型的数学形式

通过对生存曲线的学习,我们知道生存率(或死亡风险)是关于生存时间的函数。Cox模型也继承了这一假设,不过它研究的直接对象并不是生存率或死亡率,而是风险函数(hazard function),使用表示,含义是瞬时死亡率。

使用表示死亡函数,即主体生存时间不大于的概率,那么有,

基准风险(baseline hazard)表示风险函数随时间变化的部分,使用表示。

此外,风险函数还会受到主体自身原因即协变量的影响,如性别等。Cox模型假设这部分风险是与时间无关的,并使用以下形式表示:

Cox模型还假设风险函数与基准风险成比例,比例系数就是上式,称为比例风险(proportional hazards,PH),也称风险比(hazards ratio,HR),或相对风险(relative risk,RR)。

基于以上假设,有

将简记为。从而,Cox模型的形式就是:

也可写成如下类似于Logistic模型的形式:

1.2 模型说明

Cox模型被归属于“半参数模型”。其中,基准风险是模型的非参数部分,它与时间的关系没有固定的分布模式;而比例风险函数则是模型的参数部分。

在介绍生存曲线时,我们知道生存率可以根据协变量进行分组计算,这样就限制了协变量必须是分类型变量。而对于Cox模型来说,比例风险部分是一个对数线性模型,连续型和离散型变量均可。

1.3 模型的代码形式

survival工具包中,主要使用coxph()函数运行Cox模型,代码形式大致如下:

单事件:

coxph(formula = Surv(t, status) ~ X, 
      data = data, id = id)

多事件:

coxph(formula = Surv(t1, t2, status) ~ X, 
      data = data, id = id)

从形式上看,coxph()函数的用法和前面介绍的survfit()函数很相似。

在前面介绍的四种类型的生存分析中,只有多类型多事件会涉及到生存状态之间的转移过程,这使得这种情况下的模型设定会更加复杂。接下来的内容安排如下:

  • 第2节介绍常规Cox模型,即针对单类型单事件、单类型多事件和多类型单事件的生存分析;

  • 第3节介绍多状态Cox模型,即针对多类型多事件的生存分析。

2 常规Cox模型

2.1 单类型单事件

2.1.1 模型示例

仍然使用推文《生存曲线(上)》第2节中使用的示例数据ovarian

library(survival)
model1 <- coxph(Surv(futime, fustat) ~ age,
                data = ovarian)
summary(model1)

summary(model1)语句输出结果的解读如下:

## Call:
## coxph(formula = Surv(futime, fustat) ~ age, data = ovarian)
## 
##   n= 26, number of events= 12

模型形式;数据集的行数(状态事件数+删失数);状态事件发生数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值