一个高度为N的由正整数组成的三角形,从上走到下,求经过的数字和的最大值。
每次只能走到下一层相邻的数上,例如从第3层的6向下走,只能走到第4层的2或9上。
5
8 4
3 6 9
7 2 9 5
例子中的最优方案是:5 + 8 + 6 + 9 = 28
Input
第1行:N,N为数塔的高度。(2 <= N <= 500) 第2 - N + 1行:每行包括1层数塔的数字,第2行1个数,第3行2个数…第k+1行k个数。数与数之间用空格分隔(0 <= Ai <= 10^5) 。
Output
输出最大值
Sample Input
4
5
8 4
3 6 9
7 2 9 5
Sample Output
28
#include<stdio.h>
int N,S;
long long a[505],b[505];
int main()
{
int n;
int x,y,i,j;
while(scanf("%d",&N)!=EOF)
{
for(i=0;i<N;i++)
a[i]=0,b[i]=0;
for(i=0;i<N;i++)
{
for(j=0;j<i+1;j++)
scanf("%d",&b[j]);
for(y=0;y<i+1;y++)
{
if(y==0)
b[y]+=a[y];
else if(y==i)
b[y]+=a[y-1];
else
{
if(a[y]>a[y-1])
b[y]+=a[y];
else
b[y]+=a[y-1];
}
}
for(y=0;y<i+1;y++)
a[y]=b[y];
}
long long Max=-1;
for(i=0;i<N;i++)
if(a[i]>Max)
Max=a[i];
printf("%lld\n",Max);
}
return 0;
}